How Do Glowsticks Glow?

istock.com/setsukon
istock.com/setsukon

Picture an atom. Now picture that atom getting excited. Maybe its birthday is coming up. Anyway, when an atom or a molecule gets excited, its electrons' energy levels go up. When the electrons fall back down to their normal state, they release energy in the form of photons, a basic unit of light.

For most of the lights we make and use, those excited atoms release heat as well as light when they’re coming back down. Sometimes you want the latter without the former, a “cold light” like the kind made by fireflies. In the early 1960s, U.S. military and industry scientists knew that the key to making cold light on their own was chemiluminescence, the emission of light from chemical reactions. They just weren’t sure which materials and reactions they were after (luminol had been around for a little while, but had limited applications).

Edwin Chandross, a chemist at Bell Labs in Murray Hill, N.J., was one of the researchers working on the problem.

He wondered if peroxides – chemical compounds with an oxygen-oxygen single bond that could potentially liberate a lot of energy in some reactions - might do the trick. He tried a few experiments and found that hydrogen peroxide combined with oxalyl chloride and a fluorescent dye produced the cold chemical light he was after. The reaction’s efficiency was only about 0.1% (far short of fireflies’ near 90%), but it was a start.

Chandross began corresponding with Michael Rauhut at American Cyanamid in Stamford, Connecticut, and Rauhut’s team expanded on Chandross’ research, searching for ways to make the light bright enough for practical use. They eventually came up a diphenyl oxalate ester that reacted with hydrogen peroxide to make a bright light, trademarked their creation as Cyalume, and rolled it out on the market.

The reaction that happens inside a glowstick goes a little something like this:

- The typical glowstick contains an oxalate ester and dye solution within a plastic stick, and hydrogen peroxide within a small, fragile vial in the middle of the stick.

- When you bend the stick, the vial breaks open, and all the chemicals come together. The oxalate ester and hydrogen peroxide react, sometimes with the help of a catalyst, to form a peroxyacid ester and phenol.

- The peroxyacid ester decomposes to form more phenol and carbon dioxide, producing energy that excites all the molecules floating around in this little party, which then release photons, making the stick glow.

Since the glowstick’s invention, researchers have been fiddling around with this reaction, searching for fluorescing dyes to make different colors (green and yellow are said to be easy to make, while a good purple is near impossible) and adjusting the concentrations of the chemicals to brighten the glow or prolong its life.

American Cyanamid eventually sold its chemical light division, Omniglow. The R&D department there has continued to expand the uses and capabilities of glowsticks, creating luminescent intubating scopes and researching more efficient reactions and glow sticks that work at below-freezing temperatures.

What's the Difference Between Stuffing and Dressing?

iStock
iStock

For carbohydrate lovers, nothing completes a Thanksgiving meal quite like stuffing—shovelfuls of bread, celery, mushrooms, and other ingredients that complement all of that turkey protein.

Some people don’t say stuffing, though. They say dressing. In these calamitous times, knowing how to properly refer to the giant glob of insulin-spiking bread seems necessary. So what's the difference?

Let’s dismiss one theory off the bat: Dressing and stuffing do not correlate with how the side dish is prepared. A turkey can be stuffed with dressing, and stuffing can be served in a casserole dish. Whether it’s ever seen the inside of a bird is irrelevant, and anyone who tells you otherwise is wrong and should be met with suspicion, if not outright derision.

The terms are actually separated due to regional dialects. Dressing seems to be the favored descriptor for southern states like Mississippi, Tennessee, South Carolina, and Georgia, while stuffing is preferred by Maine, New York, and other northern areas. (Some parts of Pennsylvania call it filling, which is a bit too on the nose, but to each their own.)

If stuffing stemmed from the common practice of filling a turkey with carbs, why the division? According to HuffPost, it may have been because Southerners considered the word stuffing impolite, and therefore never embraced it.

While you should experience no material difference in asking for stuffing or dressing, when visiting relatives it might be helpful to keep to their regionally-preferred word to avoid confusion. Enjoy stuffing yourselves.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Why Do Tires Have to Be Filled With Air?

BookyBuggy/iStock via Getty Images
BookyBuggy/iStock via Getty Images

Paul Misencik:

This is an issue that has perplexed me for most of my life, because pneumatic tires filled with air seem like the last anachronistic, 19th-century component of a modern automobile, and an idea which should have disappeared many decades ago. In an era where even the internal combustion engine itself is giving way to electric motors, and where a new economy hatchback has exponentially more computing power than the Space Shuttle, pneumatic tires don’t seem to make sense any longer.

(And before I get flamed, I know modern tires are vastly more advanced and reliable and capable than their 1930s counterparts. Blowouts, which were a common occurrence when I was a kid, are pretty much unheard of today. Modern tires are great, but they are still vulnerable and maintenance-intensive in a way that doesn’t make any sense to me.)

Companies have experimented with non-pneumatic passenger vehicle tires in the modern age—one of the primary drivers was Michelin. But the tires weren’t filled with solid rubber. In fact, they didn’t even have sidewalls. They were open on the sides, and they had a support lattice of structural polyester ribs, with a ton of air space between the contact patch and the (now deformable) wheel.

One of the big problems with switching from pneumatic tires to non-pneumatic tires is the fact that the current air-filled tire is an important component of the suspension of a vehicle. The flex in the sidewall is a critical part of the compliance of the suspension and substantially affects a vehicle's ride and handling. (Which is why race car drivers sweat tire pressures at each corner of the vehicle so much, as even a small change in tire pressure can have a big effect on the handling and grip of a vehicle.)

If a company like Michelin wants to make a non-pneumatic tire, they'll improve their chances of finding success with it if the new design mimics the compliance and flex characteristics of the outgoing, air-filled models as closely as possible. That way, Michelin would be able to sell the new, non-pneumatic design as a retrofit to older vehicles whose suspensions were originally designed with pneumatic tires in mind. And that is hugely important because if they can’t, it becomes much more difficult to convince manufacturers to change over to the new design—particularly after the mild debacle of Michelin’s failed “TRX” metric tire idea of the 1980s, which required the use of a special wheel and which, despite being by most accounts a superior design in almost every way, never really took off. (Owners of 1980s Ferrari 512 Berlinetta Boxers and some Saab 900 turbos will know what I’m talking about here.)

Non-pneumatic Michelin tires are also rather weird looking, and it’s not clear which manufacturers, if any, would take the risk of being the first to offer them on a new car.

So that is the real issue: Any non-pneumatic tire design must be not only clearly superior to the pneumatic designs of the past, but it must be functionally identical to the outgoing models they would replace, and they must be visually acceptable to consumers.

I hope it happens, though. I hope someone cracks the nut. Pneumatic tires are a 19th-century application still being used on 21st-century vehicles, and at some point that needs to change.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER