9 Facts about Physicist Michael Faraday, the 'Father of Electricity'

Hulton Archive/Getty
Hulton Archive/Getty

A self-taught scientist, Michael Faraday (1791-1867) excelled in chemistry and physics to become one of the most influential thinkers in history. He’s been called the "father of electricity," (Nikola Tesla and Thomas Edison also wear that crown) and his appetite for experimenting knew no bounds. "Nothing is too wonderful to be true, if it be consistent with the laws of nature; and in such things as these, experiment is the best test of such consistency," he wrote. Faraday discovered laws of electromagnetism, invented the first electric motor, and built the first electric generator—paving the way for our mechanized age. Read on for more Faraday facts.

1. HE NEVER HAD A FORMAL SCIENTIFIC EDUCATION.

Born in south London in a working-class family, Faraday earned a rudimentary education in reading, writing, and math. When he turned 14 he was apprenticed to a London bookbinder for the following seven years. In his free time, Faraday read Jane Marcet's Conversations in Chemistry, an 1806 bestseller that explained scientific topics for a general audience.

2. HE WAS A SELF-STARTER.

Like Marcet, Faraday was fascinated by the work of Sir Humphry Davy, a charismatic chemist who had found fame by testing the effects of nitrous oxide on himself. (He let others, including poet Samuel Taylor Coleridge, inhale the gas on the condition that they keep diaries of their thoughts and sensations while high.) In spring 1812, a customer at the bookbindery gave Faraday tickets to see Davy’s upcoming lectures. Faraday compiled his notes from the lectures in a bound volume (the one benefit of his toil at the bookbinder's) and sent the book to Davy, requesting to become his assistant—an unheard-of notion for a tradesman with no university degree. Sensing his intelligence and drive, Davy secured him a job at the Royal Institution, where Davy ran the chemistry lab.

3. HE INVENTED A MOTOR WITH MAGNETS AND MERCURY.

By 1820, other scientists had shown that an electric current produces a magnetic field, and that two electrified wires produce a force on each other. Faraday thought there could be a way to harness these forces in a mechanical apparatus. In 1822, he built a device using a magnet, liquid mercury (which conducts electricity) and a current-carrying wire that turned electrical energy into mechanical energy—in other words, the first electric motor. Faraday noted the success in his journal [PDF]: "Very satisfactory, but make more sensible apparatus."

4. HE ALSO CREATED THE FIRST ELECTRIC GENERATOR.

A decade after his breakthrough with the motor, Faraday discovered that the movement of a wire through a stationary magnetic field can induce an electrical current in the wire—the principle of electromagnetic induction. To demonstrate it, Faraday built a machine in which a copper disc rotated between the two poles of a horseshoe magnet, producing its own power. The machine, later called the Faraday disc, became the first electric generator.

5. HE SHOWED THE PULL OF MAGNETIC FORCE.

In a brilliantly simple experiment (recreated by countless schoolchildren today), Faraday laid a bar magnet on a table and covered it with a piece of stiff paper. Then he sprinkled magnetized iron shavings across the paper, which immediately arranged themselves into semicircular arcs emanating from the ends—the north and south poles—of the magnet. In addition to revealing that magnets still exert pull through barriers, he visualized the pattern of magnetic force in space.

6. YOU CAN VISIT HIS MAGNETIC LABORATORY IN LONDON.

Faraday served in a number of scientific roles at the Royal Institution, an organization dedicated to promoting applied science. Eventually Faraday was appointed as its Fullerian Professor of Chemistry, a permanent position that allowed him to research and experiment to his heart's content. His magnetic laboratory from the 1850s is now faithfully replicated in the Royal Institution's Faraday Museum. It displays many of his world-changing gadgets, including an original Faraday disc, one of his early electrostatic generators, his chemical samples, and a giant magnet.

7. HE POPULARIZED NEW SCIENTIFIC TERMINOLOGY.

Faraday's work was so groundbreaking that no descriptors existed for many of his discoveries. With his fellow scientist William Whewell, Faraday coined a number of futuristic-sounding names for the forces and concepts he identified, such as electrode, anode, cathode, and ion. (Whewell himself coined the word "scientist" in 1834, after "natural philosopher" had become too vague to describe people working in increasingly specialized fields.)

8. PRINCE ALBERT GAVE HIM SOME SWEET REAL ESTATE.

In 1848, the Prince Consort, also known as Queen Victoria's husband Prince Albert, gave Faraday and his family a comfortable home at Hampton Court—not the royal palace, but near it—free of charge, to recognize his contributions to science. The house at 37 Hampton Court Road was renamed Faraday House until he died there on August 25, 1867. Now it's known simply by its street address.

9. HE WAS FEATURED ON THE UNITED KINGDOM'S £20 NOTE.

To honor Faraday's role in the advancement of British science, the Bank of England unveiled a £20 bill with his portrait on June 5, 1991. He joined an illustrious group of Britons with their own notes, including William Shakespeare, Florence Nightingale, and Isaac Newton. By the time it was withdrawn in February 2001, the bank estimated that about 120 million Faraday bills were in circulation (that's more than 2 billion quid).

Learn Travel Blogging, Novel Writing, Editing, and More With This $30 Creative Writing Course Bundle

Centre of Excellence
Centre of Excellence

It seems like everyone is a writer lately, from personal blog posts to lengthy Instagram captions. How can your unique ideas stand out from the clutter? These highly reviewed courses in writing for travel blogs, novel writing, and even self-publishing are currently discounted and will teach you just that. The Ultimate Creative Writing Course Bundle is offering 10 courses for $29.99, which are broken down into 422 bite-sized lessons to make learning manageable and enjoyable.

Access your inner poet or fiction writer and learn to create compelling works of literature from home. Turn that passion into a business through courses that teach the basics of setting up, hosting, and building a blog. Then, the social media, design, and SEO lessons will help distinguish your blog.

Once you perfect your writing, the next challenge is getting that writing seen. While the bundle includes lessons in social media and SEO, it also includes a self-publishing course to take things into your own hands to see your work in bookshops. You’ll learn to keep creative control and royalties with lessons on the basics of production, printing, proofreading, distribution, and marketing efforts. The course bundle also includes lessons in freelance writing that teach how to make a career working from home.

If you’re more of an artistic writer, the calligraphy course will perfect your classical calligraphy scripts to confidently shape the thick and thin strokes of each letter. While it can definitely be a therapeutic hobby, it’s also a great side-hustle. Create your own designs and make some extra cash selling them as wedding placards or wall art.

Take your time perfecting your craft with lifetime access to the 10 courses included in The Ultimate Creative Writing Course Bundle. At the discounted price of $29.99, you’ll have spent more money on the coffee you’re sipping while you write your next novel than the courses themselves.

 

The Ultimate Creative Writing Course Bundle - $29.99

See Deal

At Mental Floss, we only write about the products we love and want to share with our readers, so all products are chosen independently by our editors. Mental Floss has affiliate relationships with certain retailers and may receive a percentage of any sale made from the links on this page. Prices and availability are accurate as of the time of publication.

Winter is Coming: Why Some People Seem to Feel Colder Than Others

Work blanket? Check. Hot tea? Check. Writing gloves? Check.
Work blanket? Check. Hot tea? Check. Writing gloves? Check.
shironosov/iStock via Getty Images

For a few weeks a year, as winter turns into spring, or summer gives way to fall, people in heavy coats coexist with those in sandals and shorts. Similarly, in an office where the thermostat is set at 74°F, some workers will be comfortable in short sleeves, while others will be wearing sweaters and scarves.

Underlying this disagreement are the different ways people perceive cold—and scientists are still trying to understand them.  

Men, Women, and Metabolism

In work settings, men and women often have different opinions about the ideal temperature. A 2019 study found that women performed better in math and verbal tasks at temperatures between 70°F and 80°F, while men did better below 70°F. The researchers proposed that gender-mixed workplaces might boost productivity by setting the thermostat higher than the current norm (which the Occupational Safety and Health Administration suggests should be between 68°F and 76°F).  

The discrepancy has a known physical basis: Women tend to have lower resting metabolic rates than men, due to having smaller bodies and higher fat-to-muscle ratio. According to a 2015 study, indoor climate regulations are based on an “empirical thermal comfort model” developed in the 1960s with the male workers in mind, which may overestimate female metabolic rates by up to 35 percent. To compound the problem, men in business settings might wear suits year-round, while women tend to have more flexibility to wear skirts or sundresses when it's warm outside.

Culture and the Cold

Cultural factors are also involved. European visitors are habitually alarmed by the chilly temperatures in American movie theaters and department stores, while American tourists are flabbergasted at the lack of air conditioning in many European hotels, shops, and offices. The preferred temperature for American workspaces, 70°F, is too cold for Europeans that grew up without the icy blast of air conditioners, Michael Sivak, a transportation researcher formerly at the University of Michigan, told The Washington Post in 2015.

The effects of cultural change on the human ability to withstand extreme temperatures can be dramatic. In the 19th century, 22 percent of women on the Korean island of Jeju were breath-hold divers (haenyeo). Wearing thin cotton bathing suits, haenyeo dove nearly 100 feet to gather shellfish from the sea floor, holding their breath for more than three minutes in each dive. In winter, they stayed in 55°F-57°F water for up to an hour at the time, and then warmed up by the fire for three of four hours before jumping back in.

In the 1970s, haenyeo starting wearing protective wet suits. Studies conducted between the 1960s and the 1980s showed that their tolerance for cold diminished [PDF].

Blame Your Brain

Beyond the effects of cultural practice and body composition, scientists have started to identify the cognitive factors that influence our temperature perception. It turns out that what feels unpleasantly cold versus comfortably chill is partly in our own minds.

One example is the phenomenon described as “cold contagion.” A 2014 study asked participants to view videos of people immersing their hands in visibly warm or cold water. Observers not only rated the hands in cold water as cooler than those in hot water, but their own hands became cooler when watching the cold-water videos. There was no comparable effect for the warm water videos, however. The findings suggest that we may feel colder when surrounded by shivering people at the office than if we're there by ourselves, even when setting the thermostat at the same temperature in both cases.

Other studies highlight the psychological aspects of temperature perception. Experimental participants at the Institute of Biomedical Investigations in Barcelona, Spain, watched their arms become blue, red, or green by means of virtual reality, while the neuroscientist Maria Victoria Sanchez-Vives and her team applied heat to their actual wrists. As the temperature increased, participants felt pain earlier when their virtual skin turned red than when it turned blue or green.

Subjectivity in temperature perception has led to some creative treatments for burn patients. In the 1990s, Hunter Hoffman, David Patterson, and Sam Sharar of the University of Washington developed a virtual-reality game called SnowWorld, which allows patients in hospital burn units to experience virtual immersion in a frozen environment. Amazingly, playing SnowWorld counteracted pain during wound care more effectively than morphine did.

“The perception of temperature is influenced by expectations,” Sanchez-Vives tells Mental Floss. “Putting one’s hand inside a virtual oven is perceived as ‘hot,’ while sticking one’s hand into a virtual bucket filled with iced water is perceived as ‘cold,’ despite being at room temperature in each scenario.”

In other words, if you expect to feel cold walking into the office or out on the street, chances are that you will.