6 Radiant Facts About Irène Joliot-Curie

Hulton Archive/Getty Images
Hulton Archive/Getty Images

Though her accomplishments are often overshadowed by those of her parents, Irène Joliot-Curie—the eldest daughter of Marie and Pierre Curie, who was born in Paris on September 12, 1897—was a brilliant researcher in her own right.

1. SHE WAS BORN TO, AND FOR, GREATNESS.

Irène and Marie in the laboratory, 1925.Wellcome Images, Wikimedia Commons // CC BY 4.0

Irène’s birth in Paris in 1897 launched what would become a world-changing scientific dynasty. A restless Marie rejoined her loving husband in the laboratory shortly after the baby’s arrival. Over the next 10 years, the Curies discovered radium and polonium, founded the science of radioactivity, welcomed a second daughter, Eve, and won a Nobel Prize in Physics. The Curies expected their daughters to excel in their education and their work. And excel they did; by 1925, Irène had a doctorate in chemistry and was working in her mother’s laboratory.

2. HER PARENTS' MARRIAGE WAS A MODEL FOR HER OWN.

Like her mother, Irène fell in love in the lab—both with her work and with another scientist. Frédéric Joliot joined the Curie team as an assistant. He and Irène quickly bonded over shared interests in sports, the arts, and human rights. The two began collaborating on research and soon married, equitably combining their names and signing their work Irène and Frédéric Joliot-Curie.

3. SHE AND HER HUSBAND WERE AN UNSTOPPABLE PAIR.

Bibliothèque Nationale de France, Wikimedia Commons // Public Domain

Their passion for exploration drove them ever onward into exciting new territory. A decade of experimentation yielded advances in several disciplines. They learned how the thyroid gland absorbs radioiodine and how the body metabolizes radioactive phosphates. They found ways to coax radioactive isotopes from ordinarily non-radioactive materials—a discovery that would eventually enable both nuclear power and atomic weaponry, and one that earned them the Nobel Prize in Chemistry in 1935.

4. THEY FOUGHT FOR JUSTICE AND PEACE.

The humanist principles that initially drew Irène and Frédéric together only deepened as they grew older. Both were proud members of the Socialist Party and the Comité de Vigilance des Intellectuels Antifascistes (Vigilance Committee of Anti-Fascist Intellectuals). They took great pains to keep atomic research out of Nazi hands, sealing and hiding their research as Germany occupied their country. Irène also served as undersecretary of state for scientific research of the Popular Front government.

5. SHE WAS NOT CONTENT WITH THE STATUS QUO.

Irène eventually scaled back her time in the lab to raise her children Hélène and Pierre. But she never slowed down, nor did she stop fighting for equality and freedom for all. Especially active in women’s rights groups, she became a member of the Comité National de l'Union des Femmes Françaises and the World Peace Council.

6. SHE WORKED HERSELF TO DEATH.

Irène’s extraordinary life was a mirror of her mother’s. Tragically, her death was, too. Years of watching radiation poisoning and cancer taking their toll on Marie never dissuaded Irène from her work. In 1956, dying of leukemia, she entered the Curie Hospital, where she followed her mother’s luminous footsteps into the great beyond.

Friday’s Best Amazon Deals Include Digital Projectors, Ugly Christmas Sweaters, and Speakers

Amazon
Amazon
As a recurring feature, our team combs the web and shares some amazing Amazon deals we’ve turned up. Here’s what caught our eye today, December 4. Mental Floss has affiliate relationships with certain retailers, including Amazon, and may receive a small percentage of any sale. But we only get commission on items you buy and don’t return, so we’re only happy if you’re happy. Good luck deal hunting!

3D Map Shows the Milky Way Galaxy in Unprecedented Detail

ESA
ESA

It's our galactic home, but the Milky Way contains many mysteries scientists are working to unravel. Now, as The Guardian reports, astronomers at the European Space Agency have built a 3D map that provides the most detailed look at our galaxy yet.

The data displayed in the graphic below has been seven years in the making. In 2013, the ESA launched its Gaia observatory from Kourou in French Guiana. Since then, two high-powered telescopes aboard the spacecraft have been sweeping the skies, recording the locations, movements, and changes in brightness of more than a billion stars in the Milky Way and beyond.

Using Gaia's findings, astronomers put together a 3D map that allows scientists to study the galaxy in greater depth than ever before. The data has made it possible to measure the acceleration of the solar system. By comparing the solar system's movement to that of more remote celestial objects, researchers have determined that the solar system is slowly falling toward the center of the galaxy at an acceleration of 7 millimeters per second per year, The Guardian reports. Additionally, the map reveals how matter is distributed throughout the Milky Way. With this information, scientists should be able to get an estimate of the galaxy's mass.

Gaia's observations may also hold clues to the Milky Way's past and future. The data holds remnants of the 10-billion-year-old disc that made up the edge of the star system. By comparing it to the shape of the Milky Way today, astronomers have determined that the disc will continue to expand as new stars are created.

The Gaia observatory was launched with the mission of gathering an updated star census. The previous census was conducted in 1957, and Gaia's new data reaches four times farther and accounts for 100 times more stars.

[h/t The Guardian]