How to Navigate by the Stars

Thinkstock
Thinkstock

Explorers have used the stars as a compass for millennia, and if you’re out having adventures at night, you should add the skill to your arsenal. (If nothing else, it’s a killer party trick.) Here’s how to transform the night sky into your personal roadmap.

1) Learn the Big Three

According to the Royal Naval Academy, 58 stars are handy for navigation. You need to know 38 different constellations to find all of them. If that seems daunting, there’s a cheat code. Just learn to spot three constellations: Cassiopeia, Crux, and Orion. Also keep your eye on the Big and Little Dipper.

2) Find the North Star

It’s always within one degree of true north. So use the Big Dipper and Cassiopeia are your guides. Look at the Dipper’s ladle and pretend you’re pouring soup from it. The flow of that space soup will point straight to the North Star. If you hit a constellation that looks like a wonky ‘W,’ you’ve gone too far. That’s Cassiopeia. Recalculate your cosmic GPS and back up. The North Star is smack between Cassiopeia and the Big Dipper.

3) Shoot for the Moon

If you can find Orion’s sword, following its point will show you south. Alternatively, if there’s a crescent moon, draw an imaginary line from between its tips and follow it to the horizon. That’ll point your toward the penguins.

4) Down Under? No Problem!

The North Star isn’t visible below the equator. Instead, look for the constellation Crux—it resembles a kite. If you draw a line from the top of the kite to the bottom, it’ll point you south.

5) Move Like a Star

Like the sun, stars skate east to west. Tracking how they travel across the sky should tell you which way you’re facing. For something more precise, look to Orion’s belt. The star on the belt’s right side—Mintaka—rises close to true east and sets at true west.

6) Take a Survey

Forgot to memorize your constellations? There’s an easy fix. Simply place two sticks in the ground and set them one yard apart. Now pick a star—any star. Line it up with the tops of both sticks, as if you were looking down a rifle sight. The earth’s rotation will make the star “move.” If it runs left, you’re facing north. If it shifts right, you’re south. If it rises, you’re east. If it sinks, west.

Sorry, Plant Parents: Study Shows Houseplants Don’t Improve Air Quality

sagarmanis/iStock via Getty Images
sagarmanis/iStock via Getty Images

Sometimes accepted wisdom needs a more thorough vetting process. Case in point: If you’ve ever heard that owning plants can improve indoor air quality in your home or office and act as a kind of organic air purifier or cleaner, you may be disappointed to learn that there’s not a whole lot of science to back that theory up. In fact, plants will do virtually nothing for you in that respect.

This botanic bummer comes from Drexel University researchers, who just published a study in the Journal of Exposure Science and Environmental Epidemiology. Examining 30 years of previous findings, Michael Waring, an associate professor of architectural and environmental engineering, found only scant evidence that plants do anything to filter contaminants from indoor air.

Many of these studies were limited, the study says, by unrealistic conditions. Plants would often be placed in a sealed chamber, with a single volatile organic compound (VOC) introduced to contaminate the air inside. While the VOCs decreased over a period of hours or days, Waring found that the studies placed little emphasis on measuring the clean air delivery rate (CADR), or how effectively an air purifier can “clean” the space. When Waring converted the studies' results to CADR, the plants's ability to filter contaminants was much weaker than simply introducing fresh air to disperse VOCs. (Additionally, no one is likely to live in a sealed chamber.)

The notion of plants as natural air filters likely stemmed from a NASA experiment in 1989 which argued that plants could remove certain compounds from the air. As with the other studies, it took place in a sealed environment, which made the results difficult to translate to a real-world environment.

Plants can clean air, but their efficiency is so minimal that Waring believes it would take between 10 and 1000 of them per square meter of floor space to have the same effect as simply opening a window or turning on the HVAC system to create an air exchange. Enjoy all the plants you like for their beauty, but it’s probably unrealistic to expect them to help you breathe any easier.

10 Radiant Facts About Marie Curie

Photo Illustration by Mental Floss. Curie: Hulton Archive, Getty Images. Background: iStock
Photo Illustration by Mental Floss. Curie: Hulton Archive, Getty Images. Background: iStock

Born Maria Salomea Skłodowska in Poland in 1867, Marie Curie grew up to become one of the most noteworthy scientists of all time. Her long list of accolades is proof of her far-reaching influence, but not every stride she made in the fields of chemistry, physics, and medicine was recognized with an award. Here are some facts you might not know about the iconic researcher.

1. Marie Curie's parents were teachers.

Maria Skłodowska was the fifth and youngest child of two Polish educators. Her parents placed a high value on learning and insisted that all their children—including their daughters—receive a quality education at home and at school. Maria received extra science training from her father, and when she graduated from high school at age 15, she was first in her class.

2. Marie Curie had to seek out alternative education for women.

After collecting her high school diploma, Maria had hoped to study at the University of Warsaw with her sister, Bronia. Because the school didn't accept women, the siblings instead enrolled at the Flying University, a Polish college that welcomed female students. It was still illegal for women to receive higher education at the time so the institution was constantly changing locations to avoid detection from authorities. In 1891 Maria moved to Paris to live with her sister, where she enrolled at the Sorbonne to continue her education.

3. Marie Curie is the only person to win Nobel Prizes in two separate sciences.

Marie Curie and her husband, Pierre Curie, in 1902.
Marie Curie and her husband, Pierre Curie, in 1902.
Agence France Presse, Getty Images

In 1903, Marie Curie made history when she won the Nobel Prize in physics with her husband, Pierre, and with physicist Henri Becquerel for their work on radioactivity, making her the first woman to receive the honor. The second Nobel Prize she took home in 1911 was even more historic: With that win in the chemistry category, she became the first person to win the award twice. And she remains the only person to ever receive Nobel Prizes for two different sciences.

4. Marie Curie added two elements to the Periodic Table.

The second Nobel Prize Marie Curie received recognized her discovery and research of two elements: radium and polonium. The former element was named for the Latin word for ray and the latter was a nod to her home country, Poland.

5. Nobel Prize-winning ran in Marie Curie's family.

Marie Curie's daughter Irène Joliot-Curie, and her husband, Frédéric Joliot-Curie, circa 1940.
Marie Curie's daughter Irène Joliot-Curie, and her husband, Frédéric Joliot-Curie, circa 1940.
Central Press, Hulton Archive // Getty Images

When Marie Curie and her husband, Pierre, won their Nobel Prize in 1903, their daughter Irène was only 6 years old. She would grow up to follow in her parents' footsteps by jointly winning the Nobel Prize for chemistry with her husband, Frédéric Joliot-Curie, in 1935. They were recognized for their discovery of "artificial" radioactivity, a breakthrough made possible by Irène's parents years earlier. Marie and Pierre's other son-in-law, Henry Labouisse, who married their younger daughter, Ève Curie, accepted a Nobel Prize for Peace on behalf of UNICEF, of which he was the executive director, in 1965. This brought the family's total up to five.

6. Marie Curie did her most important work in a shed.

The research that won Marie Curie her first Nobel Prize required hours of physical labor. In order to prove they had discovered new elements, she and her husband had to produce numerous examples of them by breaking down ore into its chemical components. Their regular labs weren't big enough to accommodate the process, so they moved their work into an old shed behind the school where Pierre worked. According to Curie, the space was a hothouse in the summer and drafty in the winter, with a glass roof that didn't fully protect them from the rain. After the famed German chemist Wilhelm Ostwald visited the Curies' shed to see the place where radium was discovered, he described it as being "a cross between a stable and a potato shed, and if I had not seen the worktable and items of chemical apparatus, I would have thought that I was been played a practical joke."

7. Marie Curie's notebooks are still radioactive.

Marie Curie's journals
Hulton Archive, Getty Images

When Marie Curie was performing her most important research on radiation in the early 20th century, she had no idea of the effects it would have on her health. It wasn't unusual for her to walk around her lab with bottles of polonium and radium in her pockets. She even described storing the radioactive material out in the open in her autobiography. "One of our joys was to go into our workroom at night; we then perceived on all sides the feebly luminous silhouettes of the bottles of capsules containing our products […] The glowing tubes looked like faint, fairy lights."

It's no surprise then that Marie Curie died of aplastic anemia, likely caused by prolonged exposure to radiation, in 1934. Even her notebooks are still radioactive a century later. Today they're stored in lead-lined boxes, and will likely remain radioactive for another 1500 years.

8. Marie Curie offered to donate her medals to the war effort.

Marie Curie had only been a double-Nobel Laureate for a few years when she considered parting ways with her medals. At the start of World War I, France put out a call for gold to fund the war effort, so Curie offered to have her two medals melted down. When bank officials refused to accept them, she settled for donating her prize money to purchase war bonds.

9. Marie Curie developed a portable X-ray to treat soldiers.

Marie Curie circa 1930
Marie Curie, circa 1930.
Keystone, Getty Images

Marie's desire to help her adopted country fight the new war didn't end there. After making the donation, she developed an interest in x-rays—not a far jump from her previous work with radium—and it didn't take her long to realize that the emerging technology could be used to aid soldiers on the battlefield. Curie convinced the French government to name her Director of the Red Cross Radiology Service and persuaded her wealthy friends to fund her idea for a mobile x-ray machine. She learned to drive and operate the vehicle herself and treated wounded soldiers at the Battle of the Marne, ignoring protests from skeptical military doctors. Her invention was proven effective at saving lives, and ultimately 20 "petite Curies," as the x-ray machines were called, were built for the war.

10. Marie Curie founded centers for medical research.

Following World War I, Marie Curie embarked on a different fundraising mission, this time with the goal of supporting her research centers in Paris and Warsaw. Curie's radium institutes were the site of important work, like the discovery of a new element, francium, by Marguerite Perey, and the development of artificial radioactivity by Irène and Frederic Joliot-Curie. The centers, now known as Institut Curie, are still used as spaces for vital cancer treatment research today.

SECTIONS

arrow
LIVE SMARTER