The Surprising Reason Why Pen Caps Have Tiny Holes at the Top

iStock
iStock

If you’re an avid pen chewer, or even just a diehard fan of writing by hand, you’re probably well acquainted with the small hole that tops off most ballpoint pen caps, particularly those classic Bic Cristal pens. The reason it’s there has nothing to do with pen function, it turns out. As Science Alert recently reported, it’s actually designed to counter human carelessness.

Though it’s arguably unwise—not to mention unhygienic—to chomp or suck on a plastic pen cap all day, plenty of people do it, especially kids. And inevitably, that means some people end up swallowing their pen caps. Companies like Bic know this well—so they make pen caps that won’t impede breathing if they’re accidentally swallowed.

This isn’t only a Bic requirement, though the company’s Cristal pens do have particularly obvious holes. The International Organization for Standardization, a federation that sets industrial standards for 161 countries, requires it. ISO 11540 specifies that if pens must have caps, they should be designed to reduce the risk of asphyxiation if they’re swallowed.

It applies to writing instruments “which in normal or foreseeable circumstances are likely to be used by children up to the age of 14 years.” Fancy fountain pens and other writing instruments that are clearly designed for adult use don’t need to have holes in them, nor do caps that are large enough that you can’t swallow them. Any pen that could conceivably make its way into the hands of a child needs to have an air hole in the cap that provides a minimum flow of 8 liters (about 2 gallons) of air per minute, according to the standard [PDF].

Pen cap inhalation is a real danger, albeit a rare one, especially for primary school kids. A 2012 study [PDF] reported that pen caps account for somewhere between 3 and 8 percent of “foreign body aspiration,” the official term for inhaling something you’re not supposed to. Another study found that of 1280 kids (ages 6 to 14) treated between 1997 and 2007 for foreign body inhalation in Beijing, 34 had inhaled pen caps.

But the standards help keep kids alive. In that Beijing study, none of the 34 kids died, and the caps were successfully removed by doctors. That wasn’t always the case. In the UK, nine children asphyxiated due to swallowing pen caps between 1970 and 1984. After the UK adopted the international standard for air holes in pen caps, the number of deaths dropped precipitously [PDF]. Unfortunately, it’s not foolproof; in 2007, a 13-year-old in the UK died after accidentally swallowing his pen cap.

Even if you can still breathe through that little air hole, getting a smooth plastic pen cap out of your throat is no easy task for doctors. The graspers they normally use to take foreign bodies out of airways don’t always work, as that 2012 case report found, and hospitals sometimes have to employ different tools to get the stubbornly slippery caps out (in that study, they used a catheter that could work through the hole in the cap, then inflated a small balloon at the end of the catheter to pull the cap out). The procedure doesn’t exactly sound pleasant. So maybe resist the urge to put your pen cap in your mouth.

[h/t Science Alert]

Science Finds a Better Way to Calculate 'Dog Years'

thegoodphoto/iStock via Getty Images
thegoodphoto/iStock via Getty Images

Anyone who has ever owned a pet is likely familiar with the concept of “dog years,” which suggests that one year for a dog is like seven years for a human. Using this conversion metric, a 2-year-old dog is akin to a high school freshman, while a 10-year-old dog is ready for an assisted living facility.

If that seems rather arbitrary, that’s because it is. But now, researchers at the University of California, San Diego have come to a more data-based measurement on dog aging through DNA.

The paper, published on the preprint server bioRxiv, based the finding on DNA methylation, a process in which molecules called methyl groups attach themselves to DNA and serve as an indicator of aging. Generally speaking, the older living beings get, the faster the rate of methylation. In the study, 104 Labrador retrievers were examined, with subjects ranging from 1 month to 16 years old. The results of their DNA methylation were compared to human profiles. While the rate of methylation tracked closely between the two—young and old dogs had similar rates to young and old people—adolescent and mature dogs experienced more accelerated aging.

Their recommended formula for comparing dog and human aging? Multiply the natural logarithm of a dog’s age by 16, then add 31. Or, just use this calculator. Users will see that a 2-year-old dog, for example, wouldn’t be the canine equivalent of a 14-year-old. It would be equivalent to 42 human years old and should probably start putting money into a 401(k). But because methylation slows considerably in mid-life, a 5-year-old dog is approximately a 57-year-old human, while a 6-year-old dog is nearing 60 in human years—a minor difference. Things level out as the dog gets much older, with a 10-year-old dog nearing a 70-year-old human.

Different breeds age at different rates, so the formula might not necessarily apply to other dog breeds—only Labs were studied. The work is awaiting peer review, but it does offer a promising glimpse into how our furry companions grow older.

[h/t Live Science]

Sssspectacular: Tree Snakes in Australia Can Actually Jump

sirichai_raksue/iStock via Getty Images
sirichai_raksue/iStock via Getty Images

Ophidiophobia, or fear of snakes, is common among humans. We avoid snakes in the wild, have nightmares about snakes at night, and recoil at snakes on television. We might even be born with the aversion. When researchers showed babies photos of snakes and spiders, their tiny pupils dilated, indicating an arousal response to these ancestral threats.

If you really want to scare a baby, show them footage of an Australian tree snake. Thanks to researchers at Virginia Tech, we now know these non-venomous snakes of the genus Dendrelaphis can become airborne, propelling themselves around treetops like sentient Silly String.

That’s Dendrelaphis pictus, which was caught zipping through the air in 2010. After looking at footage previously filmed by her advisor Jake Socha, Virginia Tech Ph.D. candidate Michelle Graham headed for Australia and built a kind of American Ninja Warrior course for snakes out of PVC piping and tree branches. Graham observed that the snakes tend to spot their landing target, then spring upward. The momentum gets them across gaps that would otherwise not be practical to cross.

Graham next plans to investigate why snakes feel compelled to jump. They might feel a need to escape, or continue moving, or do it because they can. Two scientific papers due in 2020 could provide answers.

Dendrelaphis isn’t the only kind of snake with propulsive capabilities. The Chrysopelea genus includes five species found in Southeast Asia and China, among other places, that can glide through the air.

[h/t National Geographic]

SECTIONS

arrow
LIVE SMARTER