17 Facts About the Apollo Program

NASA/Getty Images
NASA/Getty Images

NASA was officially established in October 1958. Just two years later, the agency started what would become one of the defining programs of the 20th century—Apollo, which put humans on the Moon in 1969. In honor of NASA's 60th anniversary, and the upcoming 50th anniversary of the Moon landing, here are 17 facts about the Apollo program.

1. THE NAME DOESN’T HAVE DEEP ROOTS.

When NASA and the Space Task Group were brainstorming names for their first manned satellite project, they favored “Project Astronaut,” which they believed would “emphasize the man in the satellite.” According to NASA, that name was eventually discarded “because it might lead to overemphasis on the personality of the man.” Mercury was chosen instead: Thanks to its use in thermometers and automobile branding, it was familiar to the American public. The Roman god's role as a messenger was also appealing [PDF]. The program would go on to make six manned flights between 1961 and 1963, taking us from Alan Shepard’s 15-minute flight to L. Gordon Cooper’s 34 hours in space.

As NASA began looking beyond Mercury missions, they recognized that a mythological naming convention had been established. Dr. Abe Silverstein, NASA's director of space flight programs, suggested the Greco-Roman god Apollo—which might seem like an odd choice for a lunar program, considering Apollo is traditionally associated with the Sun rather than the Moon. But Silverstein supposedly felt that the image of “Apollo riding his chariot across the Sun was appropriate to the grand scale of the proposed program.”

According to The New York Times, however, Silverstein would later say there was “No specific reason for it ... It was just an attractive name.”

2. APOLLO WASN’T ORIGINALLY SUPPOSED TO TAKE US TO THE MOON’S SURFACE.

The original intent of the program wasn't actually a lunar landing. When it was announced in 1960, Project Apollo’s goal was to send a three-man crew to orbit the Moon, not land on it. It wasn’t until May 1961 that President John F. Kennedy delivered his famous speech declaring that “this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth.”

It was an ambitious plan: At the time Kennedy made his announcement, only two people had ever been in space. In addition to Soviet cosmonaut Yuri Gagarin in April 1961, and Alan Shepard a month later, other animals that had made it to space included fruit flies, monkeys, dogs, and a chimpanzee.

3. APOLLO 2 AND 3 DIDN’T EXIST.

In 1967, astronauts Virgil Grissom, Edward White, and Roger Chaffee were conducting a preflight test—where the command module was mounted as it would be for a launch, but nothing was fueled up—for what was known as mission AS-204 when a fire broke out, killing the three astronauts. The decision was made to honor the astronauts by referring to the never-completed flight as Apollo 1—but this left open the question of what to call the next flight.

One solution was to call the next flight Apollo 2. Another option proposed was to retroactively designate three earlier flights (AS-201, 202, and 203) as Apollo 1-A, Apollo 2, and Apollo 3, even though these flights launched before the fire. The reason for the suggestion wasn't evident even to NASA. As the agency explained, “the sequence of, and reasoning behind, mission designations has never been really clear to anyone.”

Eventually, according to NASA’s history, the never-launched flight “would be officially recorded as Apollo 1, ‘first manned Apollo Saturn flight—failed on ground test.’ AS-201, AS-202, and AS-203 would not be renumbered in the ‘Apollo’ series, and the next mission would be Apollo 4.”

4. THE LAUNCH OF APOLLO 4 WAS ONE OF THE LOUDEST MAN-MADE NOISES EVER.

The control room for the launch of Apollo 4.
Keystone/Getty Images

Apollo 4—an unmanned mission that served as a test of the 363-foot-tall Saturn V rocket—was the first ever launch at NASA's Kennedy Space Center in Florida, when it occurred on November 9, 1967. The liftoff was so loud (according to NASA, one of the loudest manmade noises ever) that it shook buildings as far as three miles away, causing dust and debris to fall from the ceiling of the control center (above). "I hope the Vehicle Assembly Building (VAB) doesn't get any cracks," Dr. Hans Greune, director of Kennedy Launch Vehicle Operations, said after the launch. "It rattled pretty hard and a cheer went up in the control room after liftoff." The launchpad lacked a sound suppression system—but by the time the Space Shuttle was in use, more than 300,000 gallons of water were sprayed out in just 41 seconds to dampen its sound to acceptable levels.

The mission, which was successful, was designed to test the structural and thermal integrity of the craft and to evaluate various support facilities.

5. APOLLO 5 WAS A SUCCESS; APOLLO 6, NOT SO MUCH.

The uncrewed Apollo 5 was designed to test the operation of the lunar module, and it was mostly a success (there were concerns with the water boiler temperature). Apollo 6 was also unmanned, but had many more issues. For 30 seconds it experienced something called the “pogo effect” (which Popular Science explains is “almost like the rocket is bouncing on a pogo stick”)—something that NASA pointed out “would have been very uncomfortable for any crew.” Then two of the engines shut down, and the third stage wouldn't restart. Despite all these setbacks, Apollo 6 never made national headlines. On the day of the disastrous flight, Martin Luther King. Jr. was assassinated in Tennessee. “About the only explaining that NASA had to do, therefore, was to the congressional committees on space activities, who seemed satisfied with what they heard,” NASA explains.

6. THE PROGRAM RECEIVED AN EMMY.

Apollo 7 was a mission of firsts: It marked the first Apollo mission that sent people to space, as well as the first live television transmissions from space. During the transmissions—which were called the “Wally, Walt, and Donn Show”—astronauts Walter Schirra, R. Walter Cunningham, and Donn Eisele gave a tour of the vehicle and cracked a few jokes. Schirra even commented that he was “going to try for an Emmy for the best weekly series,” to which the ground crew responded, “I thought you were going to try for a Hammy” [PDF].

In a way, Schirra did get his wish: In 1969, Apollos 7, 8, 9, and 10—all of which made broadcasts back to Earth—received a special Trustees Award from the National Academy of Television Arts and Sciences.

7. APOLLO 8 GOT NASA SUED.

On Christmas Eve 1968, Apollo 8 astronauts Frank Borman, Jim Lovell, and Bill Anders circled the Moon and snapped the famous Earthrise photo. They were also told to do “something appropriate” to honor the event for the millions who were listening to them. They decided to recite from Genesis. "It's a foundation of Christianity, Judaism and Islam," Lovell said of the choice. "They all had that basis of the Old Testament."

Famous atheist Madalyn Murray O’Hair—sometimes referred to as “the most hated woman in America”—sued, alleging her First Amendment rights had been violated. Ultimately, the judge dismissed the suit and the Supreme Court declined to hear it due to lack of jurisdiction. But it did have an effect on later missions—according to Buzz Aldrin’s memoirs, he had intended to read a communion passage back to Earth during Apollo 11, but at the last moment was asked not to because of Apollo 8’s legal challenges.

8. THE FLAGS ON THE MOON HAVE A COMPLEX STORY.

Buzz Aldrin poses next to an American flag on the surface of the Moon.
NASA/Liaison/Getty Images

Raising the American flag on the Moon turned out to be a controversial move. In his 1969 inaugural address, President Nixon had proclaimed that we should “go to the new worlds together—not as new worlds to be conquered, but as a new adventure to be shared.” That spirit of shared exploration led some at NASA to discuss putting a United Nations flag on the Moon. At the same time, some had concerns over the visual effect of planting an American flag on the Moon, which they believed could make it look like the Americans were taking control of the Moon (which would have been a violation of the Outer Space Treaty). Eventually, however, the committee decided to plant the American flag and also leave a plaque to emphasize that they “came in peace for all mankind.”

The flag debate would be settled in no uncertain terms later in 1969, when NASA’s appropriation bill proclaimed “the flag of the United States, and no other flag, shall be implanted or otherwise placed on the surface of the Moon, or on the surface of any planet, by the members of the crew of any spacecraft making a lunar or planetary landing as a part of a mission under the Apollo program or as a part of a mission under any subsequent program, the funds for which are provided entirely by the Government of the United States.” Mindful of the Outer Space Treaty, the bill made sure to note that “This act is intended as a symbolic gesture of national pride in achievement and is not to be construed as a declaration of national appropriation by claim of sovereignty.”

9. IT’S UNCLEAR WHERE THE APOLLO 11 FLAG CAME FROM.

There are two possible sources for the Apollo 11 flag—and neither of them involve anything high-tech. Originally, NASA proclaimed that the “Stars and Stripes to be deployed on the Moon was purchased along with several others made by different manufacturers” in Houston-area stores. When it was affixed to the pole and crossbar that would be planted in the Moon dust, all labels and identifying information were removed.

Not long after the Moon landing, according to a NASA Contractor Report on the Lunar Flag, the head of flag manufacturer Annin & Co. asked if the flag was one of theirs. He was told that "three secretaries had been sent out to buy 3x5-foot nylon flags during their lunch hours. After they had returned it was discovered that all of them had purchased their flags at Sears."

Annin was the official flag supplier to Sears, but not wanting “another Tang”—a reference to the free publicity Tang received from NASA after John Glenn drank an orange liquid from a pouch on Friendship 7—they refused to confirm the manufacturer.

Jack Kinzler, a NASA executive, was unable to verify any of this information, though; his notes suggest that the flag was purchased from the Government Stock Catalog for $5.50.

10. BUZZ ALDRIN HAD TO FILL OUT AN EXPENSE REPORT FOR HIS TRIP.

Even a guy on the work trip of a lifetime had to fill out some paperwork afterward: Once he was back on Earth, post-successful moonwalk, Aldrin filed a travel voucher totaling $33.31. "To: Cape Kennedy, Fla. Moon Pacific Ocean (USN Hornet)," it read.

11. APOLLO 12 WAS STRUCK BY LIGHTNING—TWICE—AFTER LIFTOFF.

Astronauts Pete Conrad, Richard F Gordon Jnr, and Alan L Bean getting ready to go to the moon on the Apollo 12 mission.
Hulton Archive/Getty Images

Just 36 seconds after liftoff on November 14, 1969, the astronauts on Apollo 12—Alan Bean, Charles "Pete" Conrad, and Richard Gordon, Jr.—felt something strange. Then, things began to go wrong. The craft had been struck by lightning twice, at 36 seconds after takeoff and again at 52 seconds. Though no one in the crew or on the ground realized what had happened, the three men were calm and waited it out. Bean would later say that “One of the rules of space flight is you don't make any switch-a-roos with that electrical system unless you've got a good idea why you're doing it. I knew we had power, so I didn't want to make any changes. I figured we could fly into orbit just like that.” Eventually, he reset the electrical systems, and after 25 minutes, those systems and the fuel cells were back up and running. But the crew still had to fire its main engine to leave Earth's orbit and head for the Moon—and the automated navigation was busted. Gordon used a sextant, and Bean broke out a star chart to help them figure out where to go. And they made it.

The next Apollo mission may be the most famous, besides 11, because of its own problems—and an oxygen tank intended for Apollo 10 (Apollo 13’s Jim Lovell would later congratulate the Apollo 10 crew for getting rid of it). The tank, 10024X-TA0009, was one of two set for the earlier Apollo mission, but problems with pumps meant all the tanks needed modification. In the removal of this particular tank, it caught on a bolt and fell two inches—but because it was felt that no damage occurred, everyone moved on, and the tank was installed in the spacecraft soon to be known as Apollo 13.

During testing before the flight, technicians noted that the tank had difficulties emptying. To boil off the remaining liquid oxygen the electric heater inside the tank was plugged into 65-volt power for eight hours, with the nearby wires being subjected to 1000°F temperatures. It would later be discovered that using 65-volt power severely damaged the tank’s thermostatic switches, which were designed for 28 volts (NASA explains that in 1965, the permissible voltage to the heaters was raised to 65 volts, but the thermostatic switch manufacturer never got the memo). This internal damage likely resulted in a spark that destroyed the tank, leading to the legendary saying "Houston, we've had a problem” [PDF] and, in 1995, an award-winning movie.

12. APOLLO 12 MIGHT HAVE FOUND MICROBES ON THE MOON ... OR MAYBE NOT.

When Apollo 12 landed on the Moon, it was right next to the lander from 1967’s Surveyor 3. The astronauts grabbed parts from the craft—including a camera—to study the effects of years on the lunar surface.

Researchers hadn’t sterilized Surveyor 3, and when the camera was opened in a clean room back on Earth, a small colony of Streptococcus mitis was discovered. These bacteria had apparently survived almost three years without nutrients in freezing space and the finding, which frequently gets discussed on the internet, was hailed as a remarkable discovery.

Sadly, researchers have recently returned to the Surveyor 3 camera and learned that the claim was, at best, unconvincing. One problem was that the people studying the camera were wearing short sleeves, meaning post-recovery contamination was a very real possibility—though the researchers caution “proving the truth in such a situation is difficult, if not impossible” [PDF].

Microbes or no, there's still an important takeaway from the situation: It demonstrated the potential issues that could arise with future samples returning from places like Mars.

13. APOLLO 15 TOOK A VEHICLE TO THE MOON.

Apollo 15 Astronaut James Irwin on the moon with a moon buggy.
Keystone/Getty Images

Apollo 15, the fourth mission to put human boots on the Moon, brought along a first-of-its-kind, 460-Earth-pound Lunar Rover Vehicle (LRV) that was about the size of a dune buggy. Astronauts David Scott and James Irwin became the first people to drive on the surface of another world, and the LRV—which had a top speed of 8 mph—allowed them to travel farther from their landing site than any previous astronauts. "The LRV on Apollo fulfilled a very important need, which was to be able to cover large traverses, carry more samples, and get more scientific exploration done," Mike Neufeld, a senior curator at the Smithsonian National Air and Space Museum in Washington, D.C., told SPACE.com in 2011. "It was a really important part of why Apollo 15, 16, and 17 were so much more scientifically advanced and productive." Scott and Irwin traveled around 17 miles in the LRV. The design of the vehicles—and their experiences on the Moon—helped inform the design of the rovers that went to Mars.

14. ONE APOLLO ASTRONAUT HAD A REACTION TO LUNAR REGOLITH.

Of the 12 men who have walked on the Moon, geologist Harrison Schmitt was the only scientist. He had a reaction to lunar regolith, or Moon dust. Schmitt said the dust caused “a lot of irritation to my sinuses and nostrils soon after taking the helmet off ... the dust really bothered my eyes and throat. I was tasting it and eating it.” He joked that he had “lunar dust hay fever.” Apollo 17 would go on to collect 741 rock and soil samples—more than any other Apollo mission.

15. THE APOLLO ASTRONAUTS HAD VARIED JOBS BACK HOME.

The post-space careers of the Apollo astronauts is varied—Michael Collins was the first director of the National Air and Space Museum, for instance. Harrison Schmitt became a senator from New Mexico. James B. Irwin founded an evangelical organization, while Edgar Mitchell researched psychic phenomenon.

But the astronaut to have the most interesting job post-Moonwalk might be Buzz Aldrin, who told CNN, “Most people who have received a degree of public recognition find themselves financially pretty well off. Doesn't happen to be the case with astronauts.” And so he found himself working for a Cadillac dealership in Beverly Hills—though by his own admission he wasn’t very good at it. He explained in his memoir Magnificent Desolation, “I was a terrible salesman ... People came onto the lot in search of a car, and as soon as I struck up a conversation with them, the subject immediately turned from the comfort and convenience of a new or used luxury automobile to space travel. I spent more time signing autographs than anything else ... In fact, I didn’t sell a single car the entire time I worked at [the dealer].”

16. AN EXPERIMENT LEFT ON THE MOON DURING THE APOLLO MISSIONS IS STILL ONGOING.

One of the most lasting contributions of Apollo 11 was a 2-foot-wide panel consisting of 100 mirrors. Similar objects were left by Apollos 14 and 15, as well as Soviet rovers. Called the Lunar Laser Ranging Retroreflector experiment, it is "the only Apollo experiment that is still returning data from the Moon,” according to the Lunar and Planetary Institute. The experiment works by shooting a laser at the mirror and waiting for the reflection—but as anyone who has shined a laser pointer knows, while they don’t disperse as much as other light sources, lasers still disperse. In the case of the Moon, the laser is 4.3 miles in diameter when it hits the Moon, and 12.4 miles wide when it returns to Earth. But thanks to the program we’ve been able to learn that the Moon is moving roughly 1.5 inches away from the Earth every year, and gain new insights into Einstein’s Theory of General Relativity.

17. NEARLY HALF A CENTURY AFTER THE FINAL APOLLO MISSION, HUMAN EXPLORATION STILL MATTERS.

It’s often said that we’ve never returned to the Moon after Apollo. That’s not quite true—in 2016, China’s Yutu rover ceased operations after spending 31 months on the Moon. But humans haven’t returned, and that may be a problem.

In 2012, Ian Crawford of Birkbeck College London wrote a paper arguing that human space travel has its benefits over robotic exploration. For one, “human missions like Apollo are between two and three orders of magnitude more efficient in performing exploration tasks than robotic missions, while being only one to two orders of magnitude more expensive” [PDF]. The paper also points out that missions like Apollo are funded and undertaken for a wide range of sociopolitical reasons, and humanity can benefit in many ways.

Not everyone is convinced. Some critics argue that autonomous robots, with their rapidly improving abilities, are the better option. It’s a question with serious implications for the future of space exploration.

What is Mercury in Retrograde, and Why Do We Blame Things On It?

NASA
NASA

Crashed computers, missed flights, tensions in your workplace—a person who subscribes to astrology would tell you to expect all this chaos and more when Mercury starts retrograding. For 2020, that means February 17 through March 10; June 18 through July 12; and October 14 through November 3. But according to an astronomer, this common celestial phenomenon is no reason to stay cooped up at home for weeks at a time.

"We don't know of any physical mechanism that would cause things like power outages or personality changes in people," Dr. Mark Hammergren, an astronomer at Chicago's Adler Planetarium, tells Mental Floss. So if Mercury doesn’t throw business dealings and relationships out of whack when it appears to change direction in the sky, why are so many people convinced that it does?

The History of "Mercury in Retrograde"

Mercury retrograde—as it's technically called—was being written about in astrology circles as far back as the mid-18th century. The event was noted in British agricultural almanacs of the time, which farmers would read to sync their planting schedules to the patterns of the stars. During the spiritualism craze of the Victorian era, interest in astrology boomed, with many believing that the stars affected the Earth in a variety of (often inconvenient) ways. Late 19th-century publications like The Astrologer’s Magazine and The Science of the Stars connected Mercury retrograde with heavy rainfall. Characterizations of the happening as an "ill omen" also appeared in a handful of articles during that period, but its association with outright disaster wasn’t as prevalent then as it is today.

While other spiritualist hobbies like séances and crystal gazing gradually faded, astrology grew even more popular. By the 1970s, horoscopes were a newspaper mainstay and Mercury retrograde was a recurring player. Because the Roman god Mercury was said to govern travel, commerce, financial wealth, and communication, in astrological circles, Mercury the planet became linked to those matters as well.

"Don’t start anything when Mercury is retrograde," an April 1979 issue of The Baltimore Sun instructed its readers. "A large communications organization notes that magnetic storms, disrupting messages, are prolonged when Mercury appears to be going backwards. Mercury, of course, is the planet associated with communication." The power attributed to the event has become so overblown that today it's blamed for everything from digestive problems to broken washing machines.

What is Mercury in Retrograde?

Though hysteria around Mercury retrograde is stronger than ever, there's still zero evidence that it's something we should worry about. Even the flimsiest explanations, like the idea that the gravitational pull from Mercury influences the water in our bodies in the same way that the moon controls the tides, are easily deflated by science. "A car 20 feet away from you will exert a stronger pull of gravity than the planet Mercury does," Dr. Hammergren says.

To understand how little Mercury retrograde impacts life on Earth, it helps to learn the physical process behind the phenomenon. When the planet nearest to the sun is retrograde, it appears to move "backwards" (east to west rather than west to east) across the sky. This apparent reversal in Mercury's orbit is actually just an illusion to the people viewing it from Earth. Picture Mercury and Earth circling the sun like cars on a racetrack. A year on Mercury is shorter than a year on Earth (88 Earth days compared to 365), which means Mercury experiences four years in the time it takes us to finish one solar loop.

When the planets are next to one another on the same side of the sun, Mercury looks like it's moving east to those of us on Earth. But when Mercury overtakes Earth and continues its orbit, its straight trajectory seems to change course. According to Dr. Hammergren, it's just a trick of perspective. "Same thing if you were passing a car on a highway, maybe going a little bit faster than they are," he says. "They're not really going backwards, they just appear to be going backwards relative to your motion."

Embedded from GIFY

Earth's orbit isn't identical to that of any other planet in the solar system, which means that all the planets appear to move backwards at varying points in time. Planets farther from the sun than Earth have even more noticeable retrograde patterns because they're visible at night. But thanks to astrology, it's Mercury's retrograde motion that incites dread every few months.

Dr. Hammergren blames the superstition attached to Mercury, and astrology as a whole, on confirmation bias: "[Believers] will say, 'Aha! See, there's a shake-up in my workplace because Mercury's retrograde.'" He urges people to review the past year and see if the periods of their lives when Mercury was retrograde were especially catastrophic. They'll likely find that misinterpreted messages and technical problems are fairly common throughout the year. But as Dr. Hammergren says, when things go wrong and Mercury isn't retrograde, "we don't get that hashtag. It's called Monday."

This piece originally ran in 2018.

Arrokoth, the Farthest, Oldest Solar System Object Ever Studied, Could Reveal the Origins of Planets

NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko

A trip to the most remote part of our solar system has revealed some surprising insights into the formation of our own planet. Three new studies based on data gathered on NASA's flyby of Arrokoth—the farthest object in the solar system from Earth and the oldest body ever studied—is giving researchers a better idea of how the building blocks of planets were formed, what Arrokoth's surface is made of, and why it looks like a giant circus peanut.

Arrokoth is a 21-mile-wide space object that formed roughly 4 billion years ago. Located past Pluto in the Kuiper Belt, it's received much less abuse than other primordial bodies that sit in asteroid belts or closer to the sun. "[The objects] that form there have basically been unperturbed since the beginning of the solar system," William McKinnon, lead author of one of the studies, said at a news briefing.

That means, despite its age, Arrokoth doesn't look much different today than when it first came into being billions of years ago, making it the perfect tool for studying the origins of planets.

In 2019, the NASA spacecraft New Horizons performed a flyby of Arrokoth on the edge of the solar system 4 billion miles away from Earth. The probe captured a binary object consisting of two connected lobes that were once separate fragments. In their paper, McKinnon and colleagues explain that Arrokoth "is the product of a gentle, low-speed merger in the early solar system."

Prior to these new findings, there were two competing theories into how the solid building blocks of planets, or planetesimals, form. The first theory is called hierarchical accretion, and it states that planetesimals are created when two separate parts of a nebula—the cloud of gas and space dust born from a dying star—crash into one another.

The latest observations of Arrokoth support the second theory: Instead of a sudden, violent collision, planetesimals form when gases and particles in a nebula gradually amass to the point where they become too dense to withstand their own gravity. Nearby components meld together gradually, and a planetesimal is born. "All these particles are falling toward the center, then whoosh, they make a big planetesimal. Maybe 10, 20, 30, 100 kilometers across," said McKinnon, a professor of Earth and planetary sciences at Washington University. This type of cloud collapse typically results in binary shapes rather than smooth spheroids, hence Arrokoth's peanut-like silhouette.

If this is the origin of Arrokoth, it was likely the origin of other planetesimals, including those that assembled Earth. "This is how planetesimal formation took place across the Kuiper Belt, and quite possibly across the solar system," New Horizons principal investigator Alan Stern said at the briefing.

The package of studies, published in the journal Science, also includes findings on the look and substance of Arrokoth. In their paper, Northern Arizona University planetary scientist Will Grundy and colleagues reveal that the surface of the body is covered in "ultrared" matter so thermodynamically unstable that it can't exist at higher temperatures closer to the sun.

The ultrared color is a sign of the presence of organic substances, namely methanol ice. Grundy and colleagues speculate that the frozen alcohol may be the product of water and methane ice reacting with cosmic rays. New Horizons didn't detect any water on the body, but the researchers say its possible that H2O was present but hidden from view. Other unidentified organic compounds were also found on Arrokoth.

New Horizon's flyby of Pluto and Arrokoth took place over the course of a few days. To gain a further understanding of how the object formed and what it's made of, researchers need to find a way to send a probe to the Kuiper Belt for a longer length of time, perhaps by locking it into the orbit of a larger body. Such a mission could tell us even more about the infancy of the solar system and the composition of our planetary neighborhood's outer limits.

SECTIONS

arrow
LIVE SMARTER