Why Does Asparagus Make Your Pee Smell Funny?

iStock
iStock

The asparagus has a long and storied history. It was mentioned in the myths and the scholarly writings of ancient Greece, and its cultivation was the subject of a detailed lesson in Cato the Elder's treatise, On Agriculture. But it wasn't until the turn of the 18th century that discussion of the link between asparagus and odorous urine emerged. In 1731, John Arbuthnot, physician to Queen Anne, noted in a book about food that asparagus "affects the urine with a foetid smell ... and therefore have been suspected by some physicians as not friendly to the kidneys." Benjamin Franklin also noticed that eating asparagus "shall give our urine a disagreeable odor."

Since then, there has been debate over what is responsible for the stinky pee phenomenon. Polish chemist and doctor Marceli Nencki identified a compound called methanethiol as the cause in 1891, after a study that involved four men eating about three and a half pounds of asparagus apiece. In 1975, Robert H. White, a chemist at the University of California at San Diego, used gas chromatography to pin down several compounds known as S-methyl thioesters as the culprits. Other researchers have blamed various "sulfur-containing compounds" and, simply, "metabolites."

More recently, a study demonstrated that asparagusic acid taken orally by subjects known to produce stinky asparagus pee produced odorous urine, which contained the same volatile compounds found in their asparagus-induced odorous urine. Other subjects, who normally didn't experience asparagus-induced odorous urine, likewise were spared stinky pee after taking asparagusic acid.

The researchers concluded that asparagusic acid and its derivatives are the precursors of urinary odor (compared, in different scientific papers, to the smell of "rotten cabbage," "boiling cabbage" and "vegetable soup"). The various compounds that contribute to the distinct smell—and were sometimes blamed as the sole cause in the past—are metabolized from asparagusic acid.

Exactly how these compounds are produced as we digest asparagus remains unclear, so let's turn to an equally compelling, but more answerable question:

WHY DOESN'T ASPARAGUS MAKE YOUR PEE SMELL FUNNY?

Remember when I said that some people don't produce stinky asparagus pee? Several studies have shown that only some of us experience stinky pee (ranging from 20 to 40 percent of the subjects taking part in the study, depending on which paper you read), while the majority have never had the pleasure.

For a while, the world was divided into those whose pee stank after eating asparagus and those whose didn't. Then in 1980, a study complicated matters: Subjects whose pee stank sniffed the urine of subjects whose pee didn't. Guess what? The pee stank. It turns out we're not only divided by the ability to produce odorous asparagus pee, but the ability to smell it.

An anosmia—an inability to perceive a smell—keeps certain people from smelling the compounds that make up even the most offensive asparagus pee, and like the stinky pee non-producers, they're in the majority.

Producing and perceiving asparagus pee don't go hand-in-hand, either. The 1980 study found that some people who don't produce stinky pee could detect the rotten cabbage smell in another person's urine. On the flip side, some stink producers aren't able to pick up the scent in their own urine or the urine of others.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Why Are Sloths So Slow?

Sloths have little problem holding still for nature photographers.
Sloths have little problem holding still for nature photographers.
Geoview/iStock via Getty Images

When it comes to physical activity, few animals have as maligned a reputation as the sloth. The six sloth species, which call Brazil and Panama home, move with no urgency, having seemingly adapted to an existence that allows for a life lived in slow motion. But what makes sloths so sedate? And what horrible, poop-related price must they pay in order to maintain life in the slow lane?

According to HowStuffWorks, the sloth’s limited movements are primarily the result of their diet. Residing mainly in the canopy vines of Central and South American forests, sloths dine out on leaves, fruits, and buds. With virtually no fat or protein, sloths conserve energy by taking a leisurely approach to life. On average, a sloth will climb or travel roughly 125 feet per day. On land, it takes them roughly one minute to move just one foot.

A sloth’s digestive system matches their locomotion. After munching leaves using their lips—they have no incisors—it can take up to a month for their meals to be fully digested. And a sloth's metabolic rate is 40 to 45 percent slower than most mammals' to help compensate for their low caloric intake. With so little fuel to burn, a sloth makes the most of it.

Deliberate movement shouldn’t be confused for weakness, however. Sloths can hang from branches for hours, showing off some impressive stamina. And because they spend most of their time high up in trees, they have no need for rapid movement to evade predators.

There is, however, one major downside to the sloth's leisurely lifestyle. Owing to their meager diet, they typically only have to poop once per week. Like going in a public bathroom, this can be a stressful event, as it means going to the ground and risking detection by predators—which puts their lives on the line. Worse, that slow bowel motility means they’re trying to push out nearly one-third of their body weight in feces at a time. It's something to consider the next time you feel envious of their chill lifestyle.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Are Any of the Scientific Instruments Left on the Moon By the Apollo Astronauts Still Functional?

Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Heritage Space/Heritage Images/Getty Images

C Stuart Hardwick:

The retroreflectors left as part of the Apollo Lunar Ranging Experiment are still fully functional, though their reflective efficiency has diminished over the years.

This deterioration is actually now delivering valuable data. The deterioration has multiple causes including micrometeorite impacts and dust deposition on the reflector surface, and chemical degradation of the mirror surface on the underside—among other things.

As technology has advanced, ground station sensitivity has been repeatedly upgraded faster than the reflectors have deteriorated. As a result, measurements have gotten better, not worse, and measurements of the degradation itself have, among other things, lent support to the idea that static electric charge gives the moon an ephemeral periodic near-surface pseudo-atmosphere of electrically levitating dust.

No other Apollo experiments on the moon remain functional. All the missions except the first included experiment packages powered by radiothermoelectric generators (RTGs), which operated until they were ordered to shut down on September 30, 1977. This was done to save money, but also because by then the RTGs could no longer power the transmitters or any instruments, and the control room used to maintain contact was needed for other purposes.

Because of fears that some problem might force Apollo 11 to abort back to orbit soon after landing, Apollo 11 deployed a simplified experiment package including a solar-powered seismometer which failed after 21 days.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER