11 Booming Facts About Thunderstorms

iStock
iStock

Thunderstorms can inspire the entire range of human emotion with their vivid displays of nature's fury. Storms are used to set an ominous tone in spooky stories, even as they bring much-needed relief to parched fields or distressed humans on a hot day. These torrents are as fascinating to study as they are to watch, and as common as they are, they're actually quite complex.

1. WHAT GOES UP …

Warm, moist air is the fuel that feeds a thunderstorm the energy it needs to survive. A column of warm air quickly rising through the atmosphere is known as an updraft, and these upward winds can pack a punch. The strength of an updraft depends on how great the temperature difference is between different levels of the atmosphere. An updraft can exceed 100 mph in the strongest thunderstorms.

2. THE TOP OF THE STORM GETS SMOOSHED.

An updraft will continue skyward until the rising air is no longer warmer than the air around it. The rising air spreads out at this point, creating flat, anvil-like clouds that make a distant thunderstorm such a spectacular sight. Even more stunning are mammatus clouds, bubble-shaped formations that can develop along the bottom of anvils. Due to the strength of the storm needed to produce these vivid formations, they're often associated with severe thunderstorms.

3. RAIN DRAGS A STORM DOWN.

Once the weight of the raindrops suspended in a budding thunderstorm grows too heavy for the updraft to hold, or once raindrops fall out of the sides of the updraft, they begin falling to the ground as precipitation. The falling rain drags cooler air toward the ground, creating a downdraft, or that cool breeze you feel before and during a storm. Most downdrafts are pretty weak, but some are strong enough to cause damaging winds at the surface. A thunderstorm dies once the cool air of the downdraft cuts off the flow of warm air to the updraft, starving the storm and causing it to rain itself out.

4. THERE ARE DIFFERENT TYPES OF THUNDERSTORMS.

Not all thunderstorms are the same. There are three main types of thunderstorms. Most thunderstorms are single-cell, or a storm that pulses up, rains for half an hour, and dissipates. When that storm collapses, the wind from its downdraft can trigger more storms in a chain reaction. There are also multi-cell thunderstorms, the most common of which are squall lines. The third type of storm is a supercell, or a thunderstorm that has a rotating updraft. The twisting updraft helps supercells survive for many hours and produce more severe weather—larger hail, higher winds, and stronger tornadoes—than a normal thunderstorm.

5. HAIL BOUNCES AROUND LIKE POPCORN.

If temperatures are just right in the middle of a thunderstorm, some of the raindrops will begin to freeze as they bounce around in the updraft. The up-down motion of the newly formed hailstone will cause more liquid to accumulate on the outside of the stone, a process that causes hailstones to grow in layers like an onion. The vast majority of hail isn't large enough to cause any damage, but the updrafts in some thunderstorms are so intense that they can support hailstones the size of softballs or larger.

6. THUNDERSTORMS ARE ELECTRIFYING.

The friction between ice crystals, raindrops, and hailstones moving around in a storm can cause an electrostatic buildup between the clouds and the ground that releases its energy in a brilliant flash of lightning. Lightning is hotter than the surface of the Sun, heating the air up so fast that the shockwave radiates out in a sonic boom we hear as thunder. All thunder is caused by lightning, and all lightning causes thunder. There's no such thing as "heat lightning," a term used to describe lightning seen in the distance not accompanied by thunder. This phenomenon is simply lightning that occurs too far away for you to hear the thunder.

7. STORMS ARE PRETTY HEAVY.

Water is heavy. We look at clouds floating effortlessly through the sky and don't think about the sheer amount of weight hanging above our heads. One cumulus cloud can weigh more than 1 million pounds. When it comes to a billowing thunderstorm, though, the weight can go up tremendously depending on how much rain it's holding. We're lucky the rain doesn't all fall at once.

8. THEY BLOCK OUT THE SUN.

All of that water looming above us also has the effect of blotting out the sun. The sky gets dark before a thunderstorm because the sunshine can't make it through the vast column of water in an especially wet thunderstorm. The much-feared green sky before a storm, often thought to presage a tornado, is usually caused by sunlight refracting through both heavy rain and hailstones.

9. HUMANS CAN ACCIDENTALLY CAUSE THEM.

Humans can't control the weather, but our actions can indirectly influence where thunderstorms form. Studies have shown that increased temperatures in and around cities, due to the urban heat island effect, can trigger thunderstorms that wouldn't have otherwise formed in these areas if the city and its streets weren't there. There's also some evidence that unstable air warmed by steam released by the cooling stacks of nuclear power plants can trigger small storms.

10. IT CAN THUNDER WHEN IT'S SNOWING.

Thunder doesn't only happen when it's raining. Intense bands of snow can develop during blizzards and lake effect snow events in much the same way that a regular thunderstorm would form when it's warm out. These strong bands can produce lightning and loud cracks of thunder all while dumping copious amounts of snow in a short period of time.

11. YES, IT CAN RAIN FROGS.

There's some truth to the myth that it can rain frogs, fish, and other odd objects. If a strong tornado lofts debris high into a storm, that debris has to fall down somewhere. If a tornado sucks the water out of a pond, for example, it's very possible that the critters that used to be in the water will fall on populated areas. Hail can also form embedded with small pieces of debris like tree branches as the debris serves as a nucleus around which the water can freeze.

Denver's Temperature Dropped a Record 64 Degrees In 24 Hours

Leonid Ikan/iStock via Getty Images
Leonid Ikan/iStock via Getty Images

One sure sign summer is over: On Wednesday, residents of Denver, Colorado were experiencing a comfortable 82-degree day. Just before midnight, the temperature dropped to 29 degrees. Between Wednesday and Thursday afternoon, the Denver airport recorded a differential of 79 degrees down to 24 degrees. At one point on Wednesday, a staggering 45-degree drop was seen in the span of just three hours.

All told, a one-day span saw a 64-degree change in temperature, from a high of 83 to a low of 19, a record for the state in the month of October and just two degrees shy of matching Denver’s all-time record drop of 66 degrees on January 25, 1872. On that date, the temperature plummeted from 46 degrees to -20 degrees.

Back to 2019: Citizens tried their best to cope with the jarring transition in their environment, to mixed success. On Wednesday, the city’s Washington Park was full of joggers and shorts-wearing outdoor enthusiasts. Thursday, only the most devoted runners were out, bundled up against the frigid weather.

The cold snap also brought with it some freezing drizzle which prompted several vehicular accidents, including 200 reported during Thursday's morning commute. It’s expected to warm up some in the coming days, but residents shouldn't get too comfortable: Melting ice could lead to potholes.

[h/t KRDO]

Fall Foliage Is Running Late This Year

Free art director/iStock via Getty Images
Free art director/iStock via Getty Images

The August arrival of the pumpkin spice latte might have you feeling like fall is in full swing already, but plants aren’t quite so impressionable. According to Travel + Leisure, the best fall foliage could be coming a little later than usual this year.

Historically, the vibrant transformation starts to sweep through northern regions of the Rocky Mountains, Minnesota, and New England in mid-September, and reaches its peak by the end of the month. Other areas, including the Appalachians and Midwest states, don’t see the brightest autumn leaves until early or mid-October. The Weather Channel reports that this year, however, the forecast from the National Oceanic and Atmospheric Administration predicts unseasonably warm temperatures for the next two weeks, which could impede the color-changing process.

Warm temperatures aren’t necessarily bad for fall foliage, as long as they occur during the day and are offset by cool nights. Since meteorologists don’t expect the overnight temperatures to drop off yet, plants will likely continue producing enough chlorophyll to keep their leaves green in the coming days.

The good news is that this year’s fall foliage should only be about a week late, and meteorologist David Epstein thinks that when leaves do start to change color, we’re in for an especially beautiful treat. If the current weather forecast holds, he told Boston.com, we'll "see a longer season than last year, we’d see a more vibrant season than last year, and it would come on a little earlier than last year, which was so late.”

Though poor weather conditions like early snow, heavy rain, drought, or strong winds can cause leaves to fall prematurely, most trees right now are in a good position to deliver a brilliant display of color after a healthy, rain-filled summer.

Find out when you’ll experience peak fall foliage in your area with this interactive map.

[h/t Travel + Leisure]

SECTIONS

arrow
LIVE SMARTER