7 Shining Facts About the Sun

NASA
NASA

Isaac Asimov described the solar system as the Sun, Jupiter, and debris. He wasn't wrong—the Sun is 99.8 percent of the mass of the solar system. But what is the giant ball of fire in the sky? How does it behave and what mysteries remain? Mental Floss spoke to Angelos Vourlidas, an astrophysicist and the supervisor of the Solar Section at Johns Hopkins University Applied Physics Laboratory, to learn what scientists know about the Sun—and a few things they don't.

1. IT'S A GIANT NUCLEAR FUSION REACTOR.

The Sun is so incomprehensibly big that it's almost pointless to bother trying to imagine its size. Our star is about 860,000 miles across. It is so big that 1.3 million Earths could fit inside of it. The Sun is 4.5 billion years old, and should last for another 6.5 billion years. When it faces the final curtain, it will not go supernova, however, as lacks the mass for such an end. Rather, the Sun will grow to a red giant—destroying the Earth in the process, if we last that long, which we won't—and then contract down to become a white dwarf.

The Sun is 74 percent hydrogen and 25 percent helium, with a few other elements thrown in for flavor, and every second, nuclear reactions at its core fuse hundreds of millions of tons of hydrogen into hundreds of millions of tons of helium, releasing the heat and light that we love so very much.

2. IT HAS A GALACTIC-SCALE ORBIT.

The Sun rotates, though not quite the same way as a terrestrial planet like the Earth. Like the gas and ice giants, the Sun's equator and poles complete their rotations at different times. It takes the Sun's equator 24 days to complete a rotation. Its poles poke along and rotate every 35 days. Meanwhile, the Sun actually has its own orbit. Moving at 450,000 miles per hour, the Sun is in orbit around the center of the Milky Way galaxy, making a full loop every 230 million years.

3. IT'S HOT IN ODD WAYS.


The solar corona as captured every two hours for four days. Red is cool (~80,000°F), while yellow is hot (~2,800,000°F).
Angelos Vourlidas, JHU/APL

The Sun's temperatures leave astrophysicists puzzled. At its core, it reaches a staggering 27,000,000°F. Its surface is a frosty 10,000°F, which, as NASA notes, is still hot enough to make diamonds boil. Here's the weird part, though. Once you get into the higher parts of the Sun's corona, temperatures again rise to 3,500,000°F. Why? Nobody knows!

4. THE SUN HAS AN ATMOSPHERE—AND THE EARTH IS INSIDE IT.

If you saw the total solar eclipse earlier this year, you saw the Sun turn black, ringed by a shimmering white corona. That halo was part of the Sun's atmosphere. And it's a lot bigger than that. In fact, the Earth is inside of the Sun's atmosphere. "It basically goes as far away as Jupiter," Vourlidas tells Mental Floss. The Sun is a semi-chaotic system. Every 100 years or so, the Sun seems to go into a small "sleep," and for two or three decades, its activity is reduced. When it wakes, it becomes much more active and violent. Scientists are not sure why that is. Presently we are in one of those solar lulls.

5. THE IRON IN YOUR BLOOD COMES FROM THE SUN'S SIBLINGS.

The Sun lacks a solid core. At 27,000,000°F, it's all plasma down there. "That's where most of the heavy elements like iron and uranium are created—at the cores of stars," Vourlidas says. "When the stars explode, they are released into space. Planets form out of that debris, and that's where we get the same iron in our blood and the carbon in our cells. They were made in some star." Not ours, obviously, but a star that exploded in our neighborhood before our Sun was born. Other elements created from the cores of stars include gold, silver, and plutonium. That is what Carl Sagan meant when he said that we are children of the stars.

6. THE HOLY GRAIL OF SUN SCIENCE IS UNDERSTANDING ERUPTIONS.

The ability to predict solar storms is the holy grail for astrophysicists who study the Sun. During a coronal mass ejection, a billion tons of plasma material can be blown from the Sun at millions of miles per hour. The eruptions carry around 300 petawatts of energy—that's 50,000 times the amount of energy that humans use in a single year. As the structures travel from the Sun, they expand, and when they hit the Earth, a percentage of their energy is imparted. Those impacts can create havoc. Spacecraft are affected, airliners receive surges of x-rays, and the energy grid can be disrupted—one day perhaps catastrophically so. "Our models say it can happen every 200 years," says Vourlidas, "but the Sun doesn't know about our models."

The last such strike on the Earth is believed to have occurred in 1859. The telegraph system collapsed, but the effect on society was minimal overall. (The widespread use of electric lighting and the first power grids were still decades away.) If the Earth were to sustain a similar such destructive event today, the effects might be devastating. "It is the most violent phenomenon in our solar system," Vourlidas explains. "We need to know when such an amount of plasma has left the Sun, whether it will hit the Earth, and how hard it is going to slap us." Such foresight would allow spacecraft to power down sensitive instruments and power grids to switch off where necessary, among other things.

7. NASA'S NEXT STOP: THE SUN.


Wind moving off of the Sun in visible light. If you were in a spaceship and didn't melt, that's what you would see. The zooming effect simulates what an imager on the Parker Solar Probe will see.
Angelos Vourlidas, JHU/APL

Next year, NASA will launch the Applied Physics Laboratory's Parker Solar Probe to "kiss" the Sun. It will travel to within 4 million miles of our star—the closest we've ever come—and will study the corona and the solar wind. "At the moment, the only way we understand that system is by seeing what the properties of the wind are at Earth, and then trying to extrapolate back toward the Sun," says Vourlidas. "It's an indirect exercise. But the probe will measure the wind—how fast it is, how dense, what is the magnetic field—across multiple locations as it orbits the Sun." Once scientists get those measurements, theorists will attempt to devise new models of the solar wind, and ultimately help better predict solar storms and space weather events.

Editor's Note: This post has been updated. 

Stardust Created 7 Billion Years Ago Is the Oldest Stuff on Earth

NASA/JPL-Caltech/Harvard-Smithsonian CfA
NASA/JPL-Caltech/Harvard-Smithsonian CfA

Between 5 and 7 billion years ago, a dying star shot an explosion of particles through space. Some of that stardust ended up in a meteorite that landed in Murchison, Australia, in 1969. And according to new research, it's officially the oldest known solid material on Earth.

For the new study, published in the journal Proceedings of the National Academy of Sciences 30 years after the research began, scientists pulverized fragments of the meteorite to determine its age. The resulting paste-like substance reportedly smelled like "rotten peanut butter." The strange aroma "comes from byproducts of the breakdown of the abiotic organic molecules—molecules that didn't form from life—in the Murchison meteorite," lead author Philipp R. Heck, a curator at Chicago's Field Museum, tells Mental Floss.

Heck used acid to further break down the rock and isolate the grains of stardust, which are smaller than the period at the end of this sentence. To date the particles, the team measured neon isotopes that formed when cosmic rays hit the solid matter making up the stardust. The older the stardust is, the more cosmic rays it has been exposed to, so the amount of neon isotopes it contains can be used to estimate its age. Heck compares the method to collecting water in a bucket to determine how long it's been raining.

The team found that the meteorite contained particles older than 5.5 billion years and possibly as old as 7 billion years. The Earth has only been around for 4.5 billion years, and the sun for 4.6 billion. The formation of this super-old stardust is believed to have occurred during an "astral baby boom," according to a statement released by the Field Museum, in which an uptick in stellar activity literally created the matter that shapes the world we know today.

When the grains formed, "most stars that we see tonight in the sky didn’t exist," Heck says. "The bright stars that would have been shining through our galaxy were the previous generation of stars, our parent stars. [They] formed the elements that later became fuel and ingredients for the solar system, Earth, and us. These stars formed the material that we are made out of."

While the grains in the Murchison meteorite are the oldest solid material on the planet, many of the gases on Earth are much older. Some of the hydrogen in your body, for example, may have originated with the Big Bang 13.7 billion years ago.

17-Year-Old NASA Intern Helped Discover Twin-Starred 'Tatooine' Planet

NASA's Goddard Space Flight Center/Chris Smith
NASA's Goddard Space Flight Center/Chris Smith

On January 6, NASA announced that it had detected an Earth-sized planet, TOI 700 d, 100 light-years away from Earth that could be capable of hosting life. The same mission also led to the discovery of a rare planet with twin suns courtesy of a 17-year-old intern.

As CNN reports, high school student Wolf Cukier was combing through data collected by NASA's Transiting Exoplanet Survey Satellite, or TESS, when he noticed something strange about one binary star system. The system TOI 1338 consists of two stars that orbit each other once every 15 days. When the smaller of the two stars passes across the larger one, it's known as a stellar eclipse. But one signal that had been flagged as a stellar eclipse wasn't an eclipse at all; just three days into his internship at NASA's Goddard Space Flight Center, Cukier had found a planet orbiting the two stars.

The planet, since dubbed TOI 1338 b, is like a real-life version of Luke Skywalker's home planet Tatooine from the Star Wars movies. It's located roughly 1300 light-years away in the Pictor constellation and is somewhere between Neptune and Saturn in size. Twin-starred planets are rare, and this marks this first one detected through NASA's planet-hunting TESS mission.

TESS launched in 2018 with the goal of finding new planets outside our own solar system. Planets are typically discovered by recording stars over time and looking for dips in their brightness that indicate passing planets. This system becomes complicated when dealing with binary star systems, as dips in light caused by a planet in transit can get confused with an eclipsing star and vice versa. Without Cukier's keen eye, this latest discovery may have gone undetected.

It may have the same number of stars as Tatooine, but the similarities TOI 1338 b shares with the planet from Star Wars end there. So far, TOI 700 d is the only planet discovered by TESS that has a chance of being habitable.

[h/t CNN]

SECTIONS

arrow
LIVE SMARTER