10 Radiant Facts About Marie Curie

Photo Illustration by Mental Floss. Curie: Hulton Archive, Getty Images. Background: iStock
Photo Illustration by Mental Floss. Curie: Hulton Archive, Getty Images. Background: iStock

Born Maria Salomea Skłodowska in Poland in 1867, Marie Curie grew up to become one of the most noteworthy scientists of all time. Her long list of accolades is proof of her far-reaching influence, but not every stride she made in the fields of chemistry, physics, and medicine was recognized with an award. Here are some facts you might not know about the iconic researcher.

1. Marie Curie's parents were teachers.

Maria Skłodowska was the fifth and youngest child of two Polish educators. Her parents placed a high value on learning and insisted that all their children—including their daughters—receive a quality education at home and at school. Maria received extra science training from her father, and when she graduated from high school at age 15, she was first in her class.

2. Marie Curie had to seek out alternative education for women.

After collecting her high school diploma, Maria had hoped to study at the University of Warsaw with her sister, Bronia. Because the school didn't accept women, the siblings instead enrolled at the Flying University, a Polish college that welcomed female students. It was still illegal for women to receive higher education at the time so the institution was constantly changing locations to avoid detection from authorities. In 1891 Maria moved to Paris to live with her sister, where she enrolled at the Sorbonne to continue her education.

3. Marie Curie is the only person to win Nobel Prizes in two separate sciences.

Marie Curie and her husband, Pierre Curie, in 1902.
Marie Curie and her husband, Pierre Curie, in 1902.
Agence France Presse, Getty Images

In 1903, Marie Curie made history when she won the Nobel Prize in physics with her husband, Pierre, and with physicist Henri Becquerel for their work on radioactivity, making her the first woman to receive the honor. The second Nobel Prize she took home in 1911 was even more historic: With that win in the chemistry category, she became the first person to win the award twice. And she remains the only person to ever receive Nobel Prizes for two different sciences.

4. Marie Curie added two elements to the Periodic Table.

The second Nobel Prize Marie Curie received recognized her discovery and research of two elements: radium and polonium. The former element was named for the Latin word for ray and the latter was a nod to her home country, Poland.

5. Nobel Prize-winning ran in Marie Curie's family.

Marie Curie's daughter Irène Joliot-Curie, and her husband, Frédéric Joliot-Curie, circa 1940.
Marie Curie's daughter Irène Joliot-Curie, and her husband, Frédéric Joliot-Curie, circa 1940.
Central Press, Hulton Archive // Getty Images

When Marie Curie and her husband, Pierre, won their Nobel Prize in 1903, their daughter Irène was only 6 years old. She would grow up to follow in her parents' footsteps by jointly winning the Nobel Prize for chemistry with her husband, Frédéric Joliot-Curie, in 1935. They were recognized for their discovery of "artificial" radioactivity, a breakthrough made possible by Irène's parents years earlier. Marie and Pierre's other son-in-law, Henry Labouisse, who married their younger daughter, Ève Curie, accepted a Nobel Prize for Peace on behalf of UNICEF, of which he was the executive director, in 1965. This brought the family's total up to five.

6. Marie Curie did her most important work in a shed.

The research that won Marie Curie her first Nobel Prize required hours of physical labor. In order to prove they had discovered new elements, she and her husband had to produce numerous examples of them by breaking down ore into its chemical components. Their regular labs weren't big enough to accommodate the process, so they moved their work into an old shed behind the school where Pierre worked. According to Curie, the space was a hothouse in the summer and drafty in the winter, with a glass roof that didn't fully protect them from the rain. After the famed German chemist Wilhelm Ostwald visited the Curies' shed to see the place where radium was discovered, he described it as being "a cross between a stable and a potato shed, and if I had not seen the worktable and items of chemical apparatus, I would have thought that I was been played a practical joke."

7. Marie Curie's notebooks are still radioactive.

Marie Curie's journals
Hulton Archive, Getty Images

When Marie Curie was performing her most important research on radiation in the early 20th century, she had no idea of the effects it would have on her health. It wasn't unusual for her to walk around her lab with bottles of polonium and radium in her pockets. She even described storing the radioactive material out in the open in her autobiography. "One of our joys was to go into our workroom at night; we then perceived on all sides the feebly luminous silhouettes of the bottles of capsules containing our products […] The glowing tubes looked like faint, fairy lights."

It's no surprise then that Marie Curie died of aplastic anemia, likely caused by prolonged exposure to radiation, in 1934. Even her notebooks are still radioactive a century later. Today they're stored in lead-lined boxes, and will likely remain radioactive for another 1500 years.

8. Marie Curie offered to donate her medals to the war effort.

Marie Curie had only been a double-Nobel Laureate for a few years when she considered parting ways with her medals. At the start of World War I, France put out a call for gold to fund the war effort, so Curie offered to have her two medals melted down. When bank officials refused to accept them, she settled for donating her prize money to purchase war bonds.

9. Marie Curie developed a portable X-ray to treat soldiers.

Marie Curie circa 1930
Marie Curie, circa 1930.
Keystone, Getty Images

Marie's desire to help her adopted country fight the new war didn't end there. After making the donation, she developed an interest in x-rays—not a far jump from her previous work with radium—and it didn't take her long to realize that the emerging technology could be used to aid soldiers on the battlefield. Curie convinced the French government to name her Director of the Red Cross Radiology Service and persuaded her wealthy friends to fund her idea for a mobile x-ray machine. She learned to drive and operate the vehicle herself and treated wounded soldiers at the Battle of the Marne, ignoring protests from skeptical military doctors. Her invention was proven effective at saving lives, and ultimately 20 "petite Curies," as the x-ray machines were called, were built for the war.

10. Marie Curie founded centers for medical research.

Following World War I, Marie Curie embarked on a different fundraising mission, this time with the goal of supporting her research centers in Paris and Warsaw. Curie's radium institutes were the site of important work, like the discovery of a new element, francium, by Marguerite Perey, and the development of artificial radioactivity by Irène and Frederic Joliot-Curie. The centers, now known as Institut Curie, are still used as spaces for vital cancer treatment research today.

Sssspectacular: Tree Snakes in Australia Can Actually Jump

sirichai_raksue/iStock via Getty Images
sirichai_raksue/iStock via Getty Images

Ophidiophobia, or fear of snakes, is common among humans. We avoid snakes in the wild, have nightmares about snakes at night, and recoil at snakes on television. We might even be born with the aversion. When researchers showed babies photos of snakes and spiders, their tiny pupils dilated, indicating an arousal response to these ancestral threats.

If you really want to scare a baby, show them footage of an Australian tree snake. Thanks to researchers at Virginia Tech, we now know these non-venomous snakes of the genus Dendrelaphis can become airborne, propelling themselves around treetops like sentient Silly String.

That’s Dendrelaphis pictus, which was caught zipping through the air in 2010. After looking at footage previously filmed by her advisor Jake Socha, Virginia Tech Ph.D. candidate Michelle Graham headed for Australia and built a kind of American Ninja Warrior course for snakes out of PVC piping and tree branches. Graham observed that the snakes tend to spot their landing target, then spring upward. The momentum gets them across gaps that would otherwise not be practical to cross.

Graham next plans to investigate why snakes feel compelled to jump. They might feel a need to escape, or continue moving, or do it because they can. Two scientific papers due in 2020 could provide answers.

Dendrelaphis isn’t the only kind of snake with propulsive capabilities. The Chrysopelea genus includes five species found in Southeast Asia and China, among other places, that can glide through the air.

[h/t National Geographic]

9 Facts About Narcolepsy

Korrawin/iStock via Getty Images
Korrawin/iStock via Getty Images

Everyone experiences occasional daytime sleepiness, but just a small fraction of the population knows what it’s like to have narcolepsy. The disorder is defined by persistent drowsiness throughout the day, and in some cases, sleep paralysis, hallucinations, and the sudden loss of muscle control known as cataplexy. Having narcolepsy can make doing everyday activities difficult or dangerous for patients, but unlike some chronic conditions, it’s also easy to diagnose and treat. Here are some facts you should know about the condition.

1. There are two types of narcolepsy.

If everything you know about narcolepsy comes from movies and TV, you may think of it as the disease that causes people to go limp without warning. Sudden loss of muscle control is called cataplexy, and it’s the defining symptom of type 1 narcolepsy. Type 2 narcolepsy, on the other hand, is mainly characterized by fatigue. Losing motor function while awake isn’t a problem for those with type 2.

2. Type 1 narcolepsy stems from a chemical deficiency.

Almost every patient with type 1 narcolepsy has low levels of hypocretin. Hypocretin is a neurochemical that regulates the wake-sleep cycle. When there isn’t enough of this chemical in the brain, people have trouble staying conscious and alert throughout the day. Most people with the second, less severe type of narcolepsy have normal hypocretin levels, with about a third of them producing low or undetectable amounts. Type 2 narcoplepsy has been studied far less than type 1 of the disorder, and scientists are still figuring out what causes it.

3. The exact causes of narcolepsy aren’t always clear.

So why do some people’s brains produce less hypocretin than others? That part has been hard for scientists to figure out. One possible explanation is that certain autoimmune disorders cause the body to attack the healthy brain cells that make this chemical. This disorder can be the result of genetic and environmental factors. Although people with narcolepsy rarely pass it down to their offspring (this happens less than 1 percent of the time), the sleep condition does occasionally crop up in family clusters, suggesting there is sometimes a genetic component at play. Head trauma that impacts the area of the brain responsible for governing sleep can also lead to narcolepsy in rare cases.

4. There are tests to diagnose narcolepsy.

If patients believe they might have narcolepsy, their doctors might ask them to detail their sleep history and keep a record of their sleep habits. There are also a few tests potential narcoleptics can take to determine if they have the condition. During a polysomnography test, patients spend the night at a medical facility with electrodes attached to their heads to monitor their breathing, eye movement, and brain activity. A multiple sleep latency test is similar, except it gauges how long it takes patients to fall asleep during the day.

5. Strong emotions can trigger cataplexy.

Cataplectic spells can sometimes be predicted by triggers. In some patients, feeling strong emotions—whether they’re crying, laughing, angry, or stressed—is all it takes for them to lose muscle control. These triggers vary from patient to patient, and they can even affect the same person randomly. Some people deal with them by avoiding certain situations and closing themselves off emotionally, which can disrupt their social lives.

6. Narcolepsy can make sleep terrifying.

Narcoleptics don’t just worry about their disorder during their waking hours. When they’re trying to fall asleep at night or wake up in the morning, narcolepsy can complicate things. One symptom is experiencing vivid, dream-like hallucinations while transitioning in or out of consciousness. These visions are often scary and may involve an intruder in the room with the sleeper. If they happen as the patient falls asleep, the hallucinations are called hypnagogic, and if they occur as they wake up, they’re hypnopompic.

A related symptom is sleep paralysis. This happens when a person’s brain cuts off muscle control of their body before they’re fully asleep or as they’re waking up. This combined with hypnagogic or hypnopompic nightmares can cause frightening experiences that are sometimes confused for real encounters.

7. Narcoleptics sometimes do activities half-asleep.

To outside observers, narcolepsy is sometimes hard to spot. A narcoleptic patient overcome by sleepiness won’t necessarily pass out in the middle of what they’re doing. Some act out “automatic behavior,” which means they continue with their actions—whether that’s walking, driving, or typing—with limited consciousness. This can cause poor performance at work or school, and in worst case scenarios, accidents while driving a car or operating machinery.

8. Harriet Tubman may have had narcolepsy.

One of the most famous likely narcoleptics in history is Harriet Tubman. The African American abolitionist was known to suffer from what were probably sudden narcoleptic episodes. The condition may have stemmed from the severe head trauma she sustained when a slave master threw an iron at another slave and hit her instead. The injury left her with permanent brain damage: In addition to narcolepsy, she also experienced chronic seizures and migraines throughout her life.

9. Medications and lifestyle changes are common narcolepsy treatments.

Though there’s no way to cure narcolepsy completely, there are many treatment options available. Taking medication is one of the most common ways to manage the disorder. Stimulants such as modafinil and armodafinil can be used to combat mild sleepiness, while amphetamines are often prescribed for more severe forms of fatigue. For hallucinations and sleep paralysis, selective serotonin reuptake inhibitors and serotonin and norepinephrine reuptake inhibitors—drugs that suppress REM sleep—can help.

As an alternative or supplementary treatment to medications, doctors may recommend lifestyle changes. Sticking to a sleep schedule, exercising regularly, avoiding nicotine and alcohol, and taking naps during the day can all reduce the symptoms of narcolepsy.

SECTIONS

arrow
LIVE SMARTER