How Do Tsunamis Work?

Hiroshi Kawahara, AFP/Getty Images
Hiroshi Kawahara, AFP/Getty Images

Tsunamis have been wreaking havoc on the world's coastlines for centuries. Since 1850 alone, tsunamis have been responsible for taking 420,000 lives and causing billions of dollars in damage. How do these monster waves work?

DON'T CALL IT A TIDAL WAVE

Tsunamis have nothing to do with the wind-generated waves we're used to seeing, or the tides—they’re a set of ocean waves caused by the rapid displacement of water. Most commonly, this happens when large underwater earthquakes push up the seabed; the larger and shallower the earthquake, the bigger the potential tsunami. Once generated, the waves split: A distant tsunami travels out into the open ocean, while a local tsunami travels toward the nearby coast. The speed of the waves depends on the depth of the water, but typically, waves roll across the ocean at speeds between 400 and 500 mph.

It’s not only the method of generation that differentiates tsunamis from wind-generated waves. On average, wind waves have a crest-to-crest wavelength—the distance over which the wave’s shape repeats—of approximately 330 feet and a height of 6.6 feet. A deep ocean tsunami will have a wavelength of 120 miles and amplitude (the distance from the peak of the wave to its trough) of only about 3.3 feet. This is why tsunamis are difficult to detect in the open ocean.

As a tsunami approaches the shore, the wave compresses: Its speed and wavelength decrease while its amplitude grows enormously. Most waves arrive on-shore not as a huge wave but as a fast-moving tidal bore that floods the shoreline. However, if the trough of the wave arrives before the ridge, or peak, the sea will recede from the shore, exposing normally submerged areas, as the trough builds into a ridge. This can serve as a brief warning that a tsunami is about to occur.

Other causes of tsunamis include underwater landslides and explosions. Another type of wave, called a mega-tsunami, is caused by above-water landslides or glacier calving. The largest recorded mega-tsunami struck in Alaska’s Lituya Bay in 1958; an earthquake triggered a landslide that displaced so much water that the waves created were 470 feet taller than the Empire State Building.

MONITORING WAVES

Like earthquakes, tsunamis can’t be predicted—but that doesn’t mean scientists aren’t trying to figure out ways to warn people before the flooding starts. Using a system of buoys called DART—Deep-Ocean Assessment and Reporting of Tsunamis—researchers can monitor ocean wave height in real time. When an earthquake occurs that scientists believe is likely to trigger a tsunami, these strategically placed buoys send reports on sea level change back to tsunami warning centers. There, scientists use that data to create a model of the potential tsunami’s effects and decide whether to issue a warning or make populations evacuate.

In the 2012 action film Battleship, the DART system took a star turn. Director Peter Berg used it as a method of creating the game’s iconic grid. (The Hollywood version of DART is much more robust than the real-world version, which has just 39 buoys.)

LOCATION, LOCATION, LOCATION

Tsunamis are mostly generated by quakes that occur in subduction zones: areas where denser oceanic plates slide underneath lighter continental plates, causing vertical displacement of the seafloor and water column above it. The majority of the world's subduction zones are in the Pacific Ocean bordering Oceania, Asia, North America, and South America. This highly unsettled loop is nicknamed the "ring of fire" for its concentration of geologic upheavals.

Because the Atlantic Ocean has far fewer subduction zones than the Pacific, Atlantic tsunamis are rare, but possible. The most likely cause would be an earthquake creating a submarine landslide that would displace a huge volume of water and trigger the wave.

In 2001, geophysicists Steven N. Ward and Simon Day suggested that an Atlantic mega-tsunami could be generated by a massive landslide off La Palma, the most active volcano in the Canary Islands archipelago. The theory was based on modeling a number of worst-case scenarios, the authors said. Others have argued that the danger is overblown.

Wednesday’s Best Amazon Deals Include Computer Monitors, Plant-Based Protein Powder, and Blu-ray Sets

Amazon
Amazon
As a recurring feature, our team combs the web and shares some amazing Amazon deals we’ve turned up. Here’s what caught our eye today, December 2. Mental Floss has affiliate relationships with certain retailers, including Amazon, and may receive a small percentage of any sale. But we only get commission on items you buy and don’t return, so we’re only happy if you’re happy. Good luck deal hunting!

Why Your Christmas Lights Always Get Tangled, According to Science

iStock
iStock

A Christmas tree isn't a Christmas tree without those pretty colored lights, right? OK, no problem. You stored them in a box marked "Xmas lights" 11 months ago. You know where the box is. Now you just have to open the box, grab the lights, and—

That's where it gets tricky. Unless you're very lucky, or extremely well organized, the lights are likely all tangled up; soon you're down on your hands and knees, struggling to untangle a spaghetti-like jumble. (And it's not just you: A couple of years ago, the British grocery chain Tesco hired temporary "Christmas light untanglers" for the holiday season.) But why are Christmas lights so prone to tangling in the first place—and can anything be done about it?

Why do Christmas lights get tangled in the first place?

There are really two separate problems, explains Colin Adams, a mathematician at Williams College in Williamstown, Massachusetts, and the author of The Knot Book, an introduction to the mathematical theory of knots. First, the cord on which the lights are attached is prone to tangling—just as headphone and earbud cords are (or, in the past, telephone handset cords).

Several years ago, physicists Dorian Raymer and Douglas Smith, then at the University of California, San Diego, did a study to see just how easily cords can get tangled. They put bits of string of various lengths in a cube-shaped box, and then mechanically rotated the box so that the strings tumbled around, like socks in a dryer, repeating the experiment more than 3400 times. The first knots appeared within seconds. More than 120 different types of knots spontaneously formed during the experiment. They also found—perhaps not surprisingly—that the longer the string, the more likely it was to become knotted (few knots formed in strings shorter than 18 inches, they noted). As the length of the string increased, the probability of a knot forming approached 100 percent.

The material that the string (or cord) is made of is important too; a more flexible cord is more likely to tangle than a less flexible one. And while the length of the cord matters, so does its diameter: In general, long cords get tangled more easily than short ones, but a cord with a large diameter will be less flexible, which reduces the risk of knotting. In other words, it's the ratio of length to diameter that really matters. That's why a garden hose can get tangled—it's relatively stiff, but it's also very long compared to its diameter.

But that's not the end of the story. If a cord has a metal wire inside it—as traditional Christmas lights do—then it can acquire a sort of "natural curvature," Jay Miller, a senior research scientist at the Connecticut-based United Technologies Research Center, tells Mental Floss. That means that a wire that's been wrapped around a cylindrical spool, for example, will tend to retain that shape.

"Christmas lights are typically spooled for shipping or packing, which bends metal wire past its 'plastic limit,' giving it natural curvature approximately the size of the spool it was wound around," Miller says. Christmas lights can be even harder to straighten than other wound materials because they often contain a pair of intertwined wires, giving them an intrinsic twist.

And then there's the additional problem of the lights. "Christmas lights are doubly difficult, once things get tangled, because there are all of these little projections—the lights—sticking out of them," Adams says. "The lights get in the way of each other, and it makes it very difficult to pull one strand through another. That means once you're tangled, it's much harder to disentangle."

How do you fix tangled Christmas lights?

What, then, can be done? One option would be for manufacturers to make the cord out of a stiff yet elastic material—something that would more readily "bounce back" from the curvature that was imparted to it while in storage. A nickel-titanium alloy known as Nitinol might be a candidate, says Miller—but it's too expensive to be a practical choice. And anyway, the choice of material probably makes little difference as long as the lights still protrude from the cord. Perhaps the biggest breakthrough in recent years has been the proliferation of LED "rope lights" that don't employ traditional bulbs at all; rather, they use LEDs embedded within the rope-like cord itself. Of course, these can still get tangled up in the manner of a garden hose, but without those pesky protrusions, they're easier to untangle.

A simpler solution, says Adams, is to coil the lights very carefully when putting them away, ideally using something like twist-ties to keep them in place. (Martha Stewart has proposed something similar, using sheets of cardboard instead of twist-ties.)

Meanwhile, the mathematicians have some advice if you find yourself confronted with a hopelessly tangled, jumbled cord: Find one of the "free" ends, and work from there.

"Eventually," Adams assures us, "you will succeed."