Here's the Closest View of Jupiter's Great Red Spot That Humans Have Ever Seen

NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran © PUBLIC DOMAIN
NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran © PUBLIC DOMAIN

NASA's Juno spacecraft completed perijove 7 yesterday, flying nearest to Jupiter in its 53-day orbit and collecting intimate science a mere 5600 miles above the gas giant's cloud tops. This flyby took the spacecraft directly over Jupiter's Great Red Spot, a centuries-old, 10,000-mile-wide vermilion vortex that has long perplexed scientists. Among the storm's unknowns are its depth and perpetuating forces. The first raw images of the Earth-sized hurricane were released today.

"This is a storm that we've been tracking ever since the dawn of modern astronomy, and we're the first generation to get this exquisite level of detail," Leigh Fletcher, a planetary scientist at the University of Leicester, tells Mental Floss. He says that from the spacecraft's perspective, the Great Red Spot would have stretched from horizon to horizon.

Juno has thus far given us a startling new vision of Jupiter—one of teeming teals and swirling storms—and caused scientists to sharpen their pencils and rewrite much of what they knew about the solar system's largest planet. Today's initial image data promise no less a revolution in the scientific understanding of Jupiter.

What does the Great Red Spot look like from an expert's perspective? "I see a swirl of red cloud material as the vortex spirals anti-clockwise, a deep-red heart that coincides with the calm center of the powerful winds, and clusters of small-scale clouds that stand above the red depths," says Fletcher. "There's even evidence of waves in the spiral arms in these breathtaking images. It's an incredible level of detail in an image that's set to become instantly iconic."

sequential views of the great red spot of jupiter
Enhanced, filtered, and color-adjusted images of the Great Red Spot, in sequential order, showing the changing view from the spacecraft as it passed over the 10,000-mile-wide storm.
Ted Stryk © PUBLIC DOMAIN

Today's image release is just a taste of what is to come, of course. The spacecraft had all nine of its science instruments active during the pass, and data are being blasted back to the Deep Space Network at the speed of light. "For me, the real science always starts with spectroscopy," says Fletcher, "assessing the fingerprints of the gaseous composition and aerosols that are present within the storm." Juno's science payload allows scientists to peer hundreds of miles beneath Jupiter's clouds. "For years we've tried to understand how deep [the Great Red Spot] penetrates into the atmosphere, and what might be sustaining it. By probing below the clouds with the microwave instrument, we might just find the answers we've been looking for."

The Juno spacecraft launched on August 5, 2011 and achieved orbit around Jupiter on July 4, 2016. The next flyby of Jupiter will take place on September 1. It will mark the spacecraft's eighth orbit and seventh science flyby.

Want to see more amazing images? Head over to NASA's JunoCam.

A Super Pink Moon—the Biggest Supermoon of 2020—Is Coming In April

April's super pink moon will be extra big and bright (but still white).
April's super pink moon will be extra big and bright (but still white).
jakkapan21/iStock via Getty Images

The sky has already given us several spectacular reasons to look up this year. In addition to a few beautiful full moons, we’ve also gotten opportunities to see the moon share a “kiss” with Venus and even make Mars briefly disappear.

In early April, avid sky-gazers are in for another treat—a super pink moon, the biggest supermoon of 2020. This full moon is considered a supermoon because it coincides with the moon’s perigee, or the point in the moon’s monthly orbit when it’s closest to Earth. According to EarthSky, the lunar perigee occurs on April 7 at 2:08 p.m. EST, and the peak of the full moon follows just hours later, at 10:35 p.m. EST.

How a supermoon is different.

Since the super pink moon will be closer to Earth than any other full moon this year, it will be 2020’s biggest and brightest. It’s also the second of three consecutive supermoons, sandwiched between March’s worm moon and May’s flower moon. Because supermoons only appear about 7 percent bigger and 15 percent brighter than regular full moons, you might not notice a huge difference—but even the most ordinary full moon is pretty breathtaking, so the super pink moon is worth an upward glance when night falls on April 7.

The meaning of pink moon.

Despite its name, the super pink moon will still shine with a normal golden-white glow. As The Old Farmer’s Almanac explains, April’s full moon derives its misleading moniker from an eastern North American wildflower called Phlox subulata, or moss pink, that usually blooms in early April. It’s also called the paschal moon, since its timing helps the Catholic Church set the date for Easter (the word paschal means “of or relating to Easter”).

[h/t EarthSky]

Are Any of the Scientific Instruments Left on the Moon By the Apollo Astronauts Still Functional?

Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Heritage Space/Heritage Images/Getty Images

C Stuart Hardwick:

The retroreflectors left as part of the Apollo Lunar Ranging Experiment are still fully functional, though their reflective efficiency has diminished over the years.

This deterioration is actually now delivering valuable data. The deterioration has multiple causes including micrometeorite impacts and dust deposition on the reflector surface, and chemical degradation of the mirror surface on the underside—among other things.

As technology has advanced, ground station sensitivity has been repeatedly upgraded faster than the reflectors have deteriorated. As a result, measurements have gotten better, not worse, and measurements of the degradation itself have, among other things, lent support to the idea that static electric charge gives the moon an ephemeral periodic near-surface pseudo-atmosphere of electrically levitating dust.

No other Apollo experiments on the moon remain functional. All the missions except the first included experiment packages powered by radiothermoelectric generators (RTGs), which operated until they were ordered to shut down on September 30, 1977. This was done to save money, but also because by then the RTGs could no longer power the transmitters or any instruments, and the control room used to maintain contact was needed for other purposes.

Because of fears that some problem might force Apollo 11 to abort back to orbit soon after landing, Apollo 11 deployed a simplified experiment package including a solar-powered seismometer which failed after 21 days.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER