Could Imported Sperm Help Save America’s Bees?

Oakley Originals, Flickr Creative Commons // CC BY 2.0
Oakley Originals, Flickr Creative Commons // CC BY 2.0

It might be time to call in some sexual backup for male American bees. Scientists have started impregnating domestic honeybees with foreign sperm in the hopes that enlarging the gene pool will give our bees a fighting chance.

These days, the bees need all the help they can get. Colonies across the globe are disappearing and dying off, partly due to the increased use of neonicotinoid pesticides and partly from a parasite called the varroa mite. The invasive mite first landed on American shores in 1987, and it's been spreading and sickening and devouring our bees ever since.

Part of the problem, researchers say, is that the American bee gene pool has gone stagnant. We stopped importing live honeybees in 1922, which means that all the bees we've got are inbred and, therefore, all alike. They lack the genetic diversity that allows species to adapt to changing conditions or new threats. So when the mites come, they all get hit.

Many apiarists now rely on anti-mite pesticides to keep their charges safe. While these treatments may help keep the mites away, they aren't great for the bees, either—and the mites have begun to develop a resistance. But beekeepers feel like their hands are tied.

"I lost 40 percent of my colonies to varroa last fall," Matthew Shakespear of Olson's Honeybees told NPR. "I'm not taking any more chances. We've already done five treatments, compared with the two treatments we applied this time last year."

But there might be another way. Experts at the University of Washington have started to—how can we put this delicately?—manually encourage drones (male bees) in Europe and Asia to give up their sperm. All it takes is a little belly rub, and the drone, er, donates 1 microliter of fluid, or one-tenth of the amount needed to inseminate a queen bee.

"They're really accommodating," bee breeder and researcher Susan Cobey told NPR. 

It's hardly a painless procedure, but researcher Brandon Hopkins told Mental Floss it's no worse than sex in the wild. "In natural mating he uses pressure from muscles and hemolymph to evert [his genitals], (inflating it and forcing it to pop out)," Hopkins wrote in an email. "In the lab we apply pressure to the head and thorax to create similar pressure to cause the eversion. In both cases (naturally and artificially) the male dies from the process of mating."

So far, the scientists' attempts to crossbreed foreign and domestic bees have been successful. Within their test colonies, genetic diversity is up.

"This doesn't mean they are superior in performance to the other bees," Hopkins told NPR. "It means we have a better chance of finding rare and unique traits." Traits, Hopkins says, like genetic resistance to the varroa mites—a quality shared by donor bees in Italy, Slovenia, Germany, Kazakhstan, and the Republic of Georgia.

Other beekeepers are opting for a more hands-off approach, introducing imported queens to their domestic hives. Shakespear bought his from Cobey, who reared them from bees she collected in Slovenia.

"Maybe these new genetics can deal with the varroa mites naturally," Shakespear said, "rather than having to rely on chemicals. It's time to start widening our gene pool."

[h/t The Salt]

The ChopBox Smart Cutting Board Has a Food Scale, Timer, and Knife Sharper Built Right Into It

ChopBox
ChopBox

When it comes to furnishing your kitchen with all of the appliances necessary to cook night in and night out, you’ll probably find yourself running out of counter space in a hurry. The ChopBox, which is available on Indiegogo and dubs itself “The World’s First Smart Cutting Board,” looks to fix that by cramming a bunch of kitchen necessities right into one cutting board.

In addition to giving you a knife-resistant bamboo surface to slice and dice on, the ChopBox features a built-in digital scale that weighs up to 6.6 pounds of food, a nine-hour kitchen timer, and two knife sharpeners. It also sports a groove on its surface to catch any liquid runoff that may be produced by the food and has a second pull-out cutting board that doubles as a serving tray.

There’s a 254nm UVC light featured on the board, which the company says “is guaranteed to kill 99.99% of germs and bacteria" after a minute of exposure. If you’re more of a traditionalist when it comes to cleanliness, the ChopBox is completely waterproof (but not dishwasher-safe) so you can wash and scrub to your heart’s content without worry. 

According to the company, a single one-hour charge will give you 30 days of battery life, and can be recharged through a Micro USB port.

The ChopBox reached its $10,000 crowdfunding goal just 10 minutes after launching its campaign, but you can still contribute at different tiers. Once it’s officially released, the ChopBox will retail for $200, but you can get one for $100 if you pledge now. You can purchase the ChopBox on Indiegogo here.

Mental Floss has affiliate relationships with certain retailers and may receive a small percentage of any sale. But we choose all products independently and only get commission on items you buy and don't return, so we're only happy if you're happy. Thanks for helping us pay the bills!

A Prehistoric Great White Shark Nursery Has Been Discovered in Chile

Great white sharks used prehistoric nurseries to protect their young.
Great white sharks used prehistoric nurseries to protect their young.
solarseven/iStock via Getty Images

Great white sharks (Carcharodon carcharias) may be one of the most formidable and frightening apex predators on the planet today, but life for them isn’t as easy as horror movies would suggest. Due to a slow growth rate and the fact that they produce few offspring, the species is listed as vulnerable to extinction.

There is a way these sharks ensure survival, and that is by creating nurseries—a designated place where great white shark babies (called pups) are protected from other predators. Now, researchers at the University of Vienna and colleagues have discovered these nurseries occurred in prehistoric times.

In a study published in the journal Scientific Reports, Jamie A. Villafaña from the university’s Institute of Palaeontology describes a fossilized nursery found in Coquimbo, Chile. Researchers were examining a collection of fossilized great white shark teeth between 5 and 2 million years old along the Pacific coast of Chile and Peru when they noticed a disproportionate number of young shark teeth in Coquimbo. There was also a total lack of sexually mature animals' teeth, which suggests the site was used primarily by pups and juveniles as a nursery.

Though modern great whites are known to guard their young in designated areas, the researchers say this is the first example of a paleo-nursery. Because the climate was much warmer when the paleo-nursery was in use, the researchers think these protective environments can deepen our understanding of how great white sharks can survive global warming trends.