Scientists Improve Drug Safety—for Penguins

Paul Mannix, Wikimedia Commons // CC BY-SA 2.0
Paul Mannix, Wikimedia Commons // CC BY-SA 2.0
Penguins are adorable. Their infections are a lot less cute. Fortunately, scientists may have figured out how to safely knock out at least one deadly fungal disease. The researchers published their findings in the Journal of Zoo and Wildlife Medicine. Fungi in the genus Aspergillus have all kinds of strange talents. They turn up in the pantry as black mold—and in the refrigerator, as key ingredients in soy sauce and lemon-flavored drinks. Some enzymes derived from these fungi can help people with celiac disease digest gluten. But others can also make people and other animals, including penguins, very, very sick. Avian aspergillosis can lead to chronic and acute respiratory infections. The disease strikes wild and captive birds all over the world, but is especially common among African penguins in zoos, refuges, research centers, and aquaria. For a while, those penguins were treated with a medication called vitraconazole. Then the fungus evolved a resistance. There's another option: a second drug called voriconazole, which has been used successfully to cure aspergillosis in other birds. But penguins aren't other birds. They've got their own peculiar bodies and metabolisms. A dose that's good for the goose may be too much for the penguin. To determine how much voriconazole a penguin should take, researchers enlisted 18 penguins at a New Jersey aquarium in two separate trials. They tried the birds on various dosing schedules and quantities, then tested their blood plasma to see how their bodies absorbed the drug. The scientists then took all that information and fed it into a computer model, which allowed them to calculate how quickly and efficiently the average African penguin could metabolize the medication. They arrived at a concentration of 5 milligrams per kilogram of penguin body weight, once a day. Lead author Katharine Stott is an expert in translational medicine at the University of Liverpool. "Although this project was a somewhat unusual one for our group," she said in a statement, "the problem it presents is common: how can we better understand dosing strategies to optimize the use of antimicrobial agents?" Stott noted that her group's methods could carry over into other small patients as well: "The project also dealt with an issue commonly faced when trying to design pediatric treatment regimens in that dosing requirements are not always proportionally related to patient size."

Turn Your LEGO Bricks Into a Drone With the Flybrix Drone Kit

Flyxbrix/FatBrain
Flyxbrix/FatBrain

Now more than ever, it’s important to have a good hobby. Of course, a lot of people—maybe even you—have been obsessed with learning TikTok dances and baking sourdough bread for the last few months, but those hobbies can wear out their welcome pretty fast. So if you or someone you love is looking for something that’s a little more intellectually stimulating, you need to check out the Flybrix LEGO drone kit from Fat Brain Toys.

What is a Flybrix LEGO Drone Kit?

The Flybrix drone kit lets you build your own drones out of LEGO bricks and fly them around your house using your smartphone as a remote control (via Bluetooth). The kit itself comes with absolutely everything you need to start flying almost immediately, including a bag of 56-plus LEGO bricks, a LEGO figure pilot, eight quick-connect motors, eight propellers, a propeller wrench, a pre-programmed Flybrix flight board PCB, a USB data cord, a LiPo battery, and a USB LiPo battery charger. All you’ll have to do is download the Flybrix Configuration Software, the Bluetooth Flight Control App, and access online instructions and tutorials.

Experiment with your own designs.

The Flybrix LEGO drone kit is specifically designed to promote exploration and experimentation. All the components are tough and can totally withstand a few crash landings, so you can build and rebuild your own drones until you come up with the perfect design. Then you can do it all again. Try different motor arrangements, add your own LEGO bricks, experiment with different shapes—this kit is a wannabe engineer’s dream.

For the more advanced STEM learners out there, Flybrix lets you experiment with coding and block-based coding. It uses an arduino-based hackable circuit board, and the Flybrix app has advanced features that let you try your hand at software design.

Who is the Flybrix LEGO Drone Kit for?

Flybrix is a really fun way to introduce a number of core STEM concepts, which makes it ideal for kids—and technically, that’s who it was designed for. But because engineering and coding can get a little complicated, the recommended age for independent experimentation is 13 and up. However, kids younger than 13 can certainly work on Flybrix drones with the help of their parents. In fact, it actually makes a fantastic family hobby.

Ready to start building your own LEGO drones? Click here to order your Flybrix kit today for $198.

At Mental Floss, we only write about the products we love and want to share with our readers, so all products are chosen independently by our editors. Mental Floss has affiliate relationships with certain retailers and may receive a percentage of any sale made from the links on this page. Prices and availability are accurate as of the time of publication.

A Prehistoric Great White Shark Nursery Has Been Discovered in Chile

Great white sharks used prehistoric nurseries to protect their young.
Great white sharks used prehistoric nurseries to protect their young.
solarseven/iStock via Getty Images

Great white sharks (Carcharodon carcharias) may be one of the most formidable and frightening apex predators on the planet today, but life for them isn’t as easy as horror movies would suggest. Due to a slow growth rate and the fact that they produce few offspring, the species is listed as vulnerable to extinction.

There is a way these sharks ensure survival, and that is by creating nurseries—a designated place where great white shark babies (called pups) are protected from other predators. Now, researchers at the University of Vienna and colleagues have discovered these nurseries occurred in prehistoric times.

In a study published in the journal Scientific Reports, Jamie A. Villafaña from the university’s Institute of Palaeontology describes a fossilized nursery found in Coquimbo, Chile. Researchers were examining a collection of fossilized great white shark teeth between 5 and 2 million years old along the Pacific coast of Chile and Peru when they noticed a disproportionate number of young shark teeth in Coquimbo. There was also a total lack of sexually mature animals' teeth, which suggests the site was used primarily by pups and juveniles as a nursery.

Though modern great whites are known to guard their young in designated areas, the researchers say this is the first example of a paleo-nursery. Because the climate was much warmer when the paleo-nursery was in use, the researchers think these protective environments can deepen our understanding of how great white sharks can survive global warming trends.