What Gives Qizai the Brown Panda His Unique Color?

Visitors to the Foping National Nature Reserve animal sanctuary in the Chinese province of Shaanxi know there’s a star attraction waiting: Qizai, the 8-year-old panda who presents with brown and white fur, a sharp contrast from the typical black and white color scheme seen in conventional giant pandas. Qizai is the only known panda in captivity to display this anomaly. What caused it?

There’s not much of a parental history to draw from. Qizai was abandoned by his mother when he was just 2 months old, although eyewitnesses report that she was black and white. The best guesses are that his fur is the result of a genetic mutation due to inbreeding or possibly environmental factors: Pandas in the Qinling mountain range region where Qizai was found often display a tuft of brown fur on their chests. That could mean the animals are reacting to an environmental prompt that can affect their pigmentation.

A panda named Dan-Dan was the first panda with brown fur seen in the wild. When she was discovered in 1985, she mated with a regular panda and had a black and white male. Qizai’s keepers at Foping are hoping to mate Qizai at some point to see if any potential gene will be passed on to his offspring. Until then, he's apparently quite content eating bamboo and enjoying the spoils of having a full-time handler, the origin of his unique appearance remaining a mystery.

Why Are Sloths So Slow?

Sloths have little problem holding still for nature photographers.
Sloths have little problem holding still for nature photographers.
Geoview/iStock via Getty Images

When it comes to physical activity, few animals have as maligned a reputation as the sloth. The six sloth species, which call Brazil and Panama home, move with no urgency, having seemingly adapted to an existence that allows for a life lived in slow motion. But what makes sloths so sedate? And what horrible, poop-related price must they pay in order to maintain life in the slow lane?

According to HowStuffWorks, the sloth’s limited movements are primarily the result of their diet. Residing mainly in the canopy vines of Central and South American forests, sloths dine out on leaves, fruits, and buds. With virtually no fat or protein, sloths conserve energy by taking a leisurely approach to life. On average, a sloth will climb or travel roughly 125 feet per day. On land, it takes them roughly one minute to move just one foot.

A sloth’s digestive system matches their locomotion. After munching leaves using their lips—they have no incisors—it can take up to a month for their meals to be fully digested. And a sloth's metabolic rate is 40 to 45 percent slower than most mammals' to help compensate for their low caloric intake. With so little fuel to burn, a sloth makes the most of it.

Deliberate movement shouldn’t be confused for weakness, however. Sloths can hang from branches for hours, showing off some impressive stamina. And because they spend most of their time high up in trees, they have no need for rapid movement to evade predators.

There is, however, one major downside to the sloth's leisurely lifestyle. Owing to their meager diet, they typically only have to poop once per week. Like going in a public bathroom, this can be a stressful event, as it means going to the ground and risking detection by predators—which puts their lives on the line. Worse, that slow bowel motility means they’re trying to push out nearly one-third of their body weight in feces at a time. It's something to consider the next time you feel envious of their chill lifestyle.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Are Any of the Scientific Instruments Left on the Moon By the Apollo Astronauts Still Functional?

Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Heritage Space/Heritage Images/Getty Images

C Stuart Hardwick:

The retroreflectors left as part of the Apollo Lunar Ranging Experiment are still fully functional, though their reflective efficiency has diminished over the years.

This deterioration is actually now delivering valuable data. The deterioration has multiple causes including micrometeorite impacts and dust deposition on the reflector surface, and chemical degradation of the mirror surface on the underside—among other things.

As technology has advanced, ground station sensitivity has been repeatedly upgraded faster than the reflectors have deteriorated. As a result, measurements have gotten better, not worse, and measurements of the degradation itself have, among other things, lent support to the idea that static electric charge gives the moon an ephemeral periodic near-surface pseudo-atmosphere of electrically levitating dust.

No other Apollo experiments on the moon remain functional. All the missions except the first included experiment packages powered by radiothermoelectric generators (RTGs), which operated until they were ordered to shut down on September 30, 1977. This was done to save money, but also because by then the RTGs could no longer power the transmitters or any instruments, and the control room used to maintain contact was needed for other purposes.

Because of fears that some problem might force Apollo 11 to abort back to orbit soon after landing, Apollo 11 deployed a simplified experiment package including a solar-powered seismometer which failed after 21 days.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER