15 Facts About Nicolaus Copernicus

iStock
iStock

Polish astronomer and mathematician Nicolaus Copernicus fundamentally altered our understanding of science. Born on February 19, 1473, he popularized the heliocentric theory that all planets revolve around the Sun, ushering in the Copernican Revolution. But he was also a lifelong bachelor and member of the clergy who dabbled in medicine and economics. Dive in to these 15 facts about the father of modern astronomy.

1. He came from a family of merchants and clergy.

Some historians believe that Copernicus's name derives from Koperniki, a village in Poland named after tradesmen who mined and sold copper. The astronomer's father, also named Nicolaus Copernicus, was a successful copper merchant in Krakow. His mother, Barbara Watzenrode, came from a powerful family of merchants, and her brother, Lucas Watzenrode the Younger, was an influential Bishop. Two of Copernicus's three older siblings joined the Catholic Church, one as a canon and one as a nun.

2. He was a polyglot.

Growing up, Copernicus likely knew both Polish and German. When Copernicus's father died when he was around 10, Lucas Watzenrode funded his nephew's education and he started learning Latin. In 1491, Copernicus began studying astronomy, math, philosophy, and logic at Krakow University. Five years later, he headed to modern Italy's Bologna University to study law, where he likely picked up some Italian. During his studies, he also read Greek, meaning modern historians think he knew or understood five languages.

3. He wasn't the first person to suggest heliocentrism ...

 A page from the work of Copernicus showing the position of planets in relation to the Sun.
A page from the work of Copernicus showing the position of planets in relation to the Sun.
Hulton Archive, Getty Images

Copernicus is credited with introducing heliocentrism—the idea that the Earth orbits the sun, rather than the sun orbiting the Earth. But several ancient Greek and Islamic scholars from various cultures discussed similar ideas centuries earlier. For example, Aristarchus of Samos, a Greek astronomer who lived in the 200s BCE, theorized that Earth and other planets revolved around the Sun.

4. … but he didn't fully give credit to earlier scholars.

To be clear, Copernicus knew of the work of earlier mathematicians. In a draft of his 1543 manuscript, he even included passages acknowledging the heliocentric ideas of Aristarchus and other ancient Greek astronomers who had written previous versions of the theory. Before submitting the manuscript for publication, though, Copernicus removed this section; theories for the removal range from wanting to present the ideas as wholly his own to simply switching out a Latin quote for a "more erudite" Greek quote and incidentally removing Aristarchus. These extra pages weren't found for another 300-some years.

5. He made contributions to economics.

He's known for math and science, but Copernicus was also quite the economist. In 1517, he wrote a research paper outlining proposals for how the Polish monarch could simplify the country's multiple currencies, especially in regard to the debasement of some of those currencies. His ideas on supply and demand, inflation, and government price-fixing influenced later economic principles such as Gresham's Law (the observation that "bad money drives out good" if they exchange for the same price; for example, if a country has both a paper $1 bill and a $1 coin, the value of the metal in the coin is higher than the value of the cotton and linen in the bill, and thus the bill will be spent as currency more because of that) and the Quantity Theory of Money (the idea that the amount of money in circulation is proportional to how much goods cost).

6. He was a physician (but he didn't have a medical degree).

After studying law, Copernicus traveled to the University of Padua so he could become a medical advisor to his sick uncle, Bishop Watzenrode. Despite spending two years studying medical texts and learning anatomy, Copernicus left medical school without a doctoral degree. Nevertheless, he traveled with his uncle and treated him, as well as other members of the clergy who needed medical attention.

7. He was probably a lifelong bachelor …

An etching of Copernicus, circa 1530.
An etching of Copernicus, circa 1530.
Hulton Archive, Getty Images

As an official in the Catholic Church, Copernicus took a vow of celibacy. He never married and was most likely a virgin (more on that below), but children were not completely absent from his life: After his older sister Katharina died, he became the financial guardian of her five children, his nieces and nephews.

8. … But he may have had an affair with his housekeeper.

Copernicus took a vow of celibacy, but did he keep it? In the late 1530s, the astronomer was in his sixties when Anna Schilling, a woman in her late forties, began living with him. Schilling may have been related to Copernicus—some historians think he was her great uncle—and she worked as his housekeeper for two years. For unknown reasons, the bishop he worked under admonished Copernicus twice for having Schilling live with him, even telling the astronomer to fire her and writing to other church officials about the matter.

9. He attended four universities before earning a degree.

A Polish stamp of Nicolaus Copernicus.
iStock

Copernicus spent over a decade studying at universities across Poland and Italy, but he usually left before he got his degree. Why skip the diplomas? Some historians argue that at the time, it was not unusual for students to leave a university without earning a degree. Moreover, Copernicus didn't need a degree to practice medicine or law, to work as a member of the Catholic Church, or even to take graduate or higher level courses. 

But right before returning to Poland he received a doctorate in canon law from the University of Ferrara. According to Copernicus scholar Edward Rosen this wasn't exactly for scholarly purposes, but that to "show that he had not frittered his time away on wine, women, and song, he had to bring home a diploma. That cost much less in Ferrara than in the other Italian universities where he studied."

10. He was cautious about publicizing his views.

During Copernicus's lifetime, nearly everyone believed in geocentrism—the view that the Earth lies at the center of the universe. Despite that, in the 1510s Copernicus wrote Commentariolus, or "the Little Commentary," a short text that discussed heliocentrism and was circulated amongst his friends. It was soon found circulating further afield, and it's said that Pope Clement VII heard a talk about the new theory and reacted favorably. Later, Cardinal Nicholas Schönberg wrote a letter of encouragement to Copernicus, but Copernicus still hesitated in publishing the full version. Some historians propose that Copernicus was worried about ridicule from the scientific community due to not being able to work out all of the issues heliocentrism created. Others propose that with the rise of the Reformation, the Catholic Church was increasingly cracking down on dissent and Copernicus feared persecution. Either way, he didn't make his complete work public until 1543.

11. He published his work on his deathbed.

An antique bookseller displays a rare first edition of Nicolaus Copernicus' revolutionary book on the planet system.
An antique bookseller displays a rare first edition of Nicolaus Copernicus' revolutionary book on the planet system, at the Tokyo International antique book fair on March 12, 2008. The book, published in 1543 and entitled in Latin "De Revolutionibus Orbium Coelestium, Libri VI," carries a diagram that shows the Earth and other planets revolving around the Sun, countering the then-prevailing geocentric theory.
YOSHIKAZU TSUNO, AFP/Getty Images

Copernicus finishing writing his book explaining heliocentrism, De Revolutionibus Orbium Coelestium (On the Revolutions of Celestial Orbs), in the 1530s. When he was on his deathbed in 1543, he finally decided to publish his controversial work. According to lore, the astronomer awoke from a coma to read pages from his just-printed book shortly before passing away.

12. Galileo was punished for agreeing with Copernicus.

Copernicus dedicated his book to the Pope, but the Catholic Church repudiated it decades after it was published, placing it on the Index of Prohibited Books—pending revision—in 1616. A few years later, the Church ended the ban after editing the text to present Copernicus's views as wholly hypothetical. In 1633, 90 years after Copernicus's death, the Church convicted astronomer Galileo Galilei of "strong suspicion of heresy" for espousing Copernicus's theory of heliocentrism. After a day in prison, Galileo spent the rest of his life under house arrest.

13. There's a chemical element named after him.

Take a look at the periodic table of elements, and you might notice one with the symbol Cn. Called Copernicium, this element with atomic number 112 was named to honor the astronomer in 2010. The element is highly radioactive, with the most stable isotope having a half life of around 30 seconds.

14. Archaeologists finally discovered his remains in 2008.

Frombork Cathedral
iStock

Although Copernicus died in 1543 and was buried somewhere under the cathedral where he worked, archaeologists weren't sure of the exact location of his grave. They performed excavations in and around Frombork Cathedral, finally hitting pay dirt in 2005 by finding part of a skull and skeleton under the church's marble floor, near an altar. It took three years to complete forensic facial reconstruction and compare DNA from the astronomer's skeleton with hair from one of his books, but archeologists were able to confirm that they had found his skeleton. Members of the Polish clergy buried Copernicus for a second time at Frombork in 2010.

15. THERE ARE MONUMENTS TO HIM AROUND THE WORLD.

The Nicolaus Copernicus Monument in Warsaw, Poland.
iStock

A prominent statue of the astronomer, simply called the Nicolaus Copernicus Monument, stands near the Polish Academy of Sciences in Warsaw, Poland. There are also replicas of this monument outside Chicago's Adler Planetarium and Montreal's Planétarium Rio Tinto Alcan. Besides monuments, Copernicus also has a museum and research laboratory—Warsaw's Copernicus Science Centre—dedicated to him.

10 Facts You Should Know About Mosquitoes

tskstock/iStock via Getty Images
tskstock/iStock via Getty Images

Between the itching and the welts and the fears of mosquito-borne viruses, it's easy to forget that mosquitoes are a wonder of evolution, and that maybe they don't get a fair shake from us. Of more than 3000 known species, only 80 actually bite people, and at least one eats other mosquitoes for us. They grow from egg to adult in just five days, begin mating within minutes of hatching, and possess, by way of their stinging mouthparts, some of the coolest appendages in the animal kingdom.

1. Mosquitoes are excellent flyers in bad weather.

The average raindrop is 50 times heavier than the average mosquito, yet they buzz around in the rain with no problems. If a Boeing 747 got whacked with a similarly scaled-up raindrop, there would be 2375 tons of water coming down on it, and things probably wouldn’t turn out as well as they do for the mosquito. How do the insects do it?

A common urban legend said that the bugs were nimble enough to dodge the drops. A few years ago, a team of engineers from the Georgia Institute of Technology watched real mosquitoes and Styrofoam dummy mosquitoes with a high-speed camera during a rainy flight to see if that’s what was really happening. They found that the bugs don’t fly fast enough to dodge the drops, but their slowness is what keeps them from getting knocked out of the sky. A mosquito’s low mass even at slow speed doesn’t provide enough of a target for a raindrop to splash on collision. Instead, the drop just deforms, and doesn’t transfer enough momentum to the mosquito to disrupt its flight.

2. Texas is the mosquito capital of America.

Of the 3000 species of mosquitoes around the world, at least 150 are found in the United States, and 85 of those call Texas home. When people say everything's bigger in Texas, you can also include the biodiversity of the state's biting, disease-carrying insects.

3. Some mosquitoes are truly dangerous to humans ...

The female mosquito, which is the one that stings and sucks blood, is an incredible transmitter of disease and, because of that, the deadliest animal in the world. Each year, the malaria parasites they transmit kill 2 million to 3 million people and infect another 200 million or more. They also spread pathogens that cause yellow fever, dengue fever, Rift Valley fever, Chikungunya and West Nile disease.

4. ... and some mosquitoes are harmless.

Not every species of mosquito sucks blood from people, and among those that do, not every one transmits disease. The blood suckers don’t even need to bite you for every meal. Males live entirely on nectar and other plant fluids, and the females’ diet is primarily plant-based, too. Most of the time, they only go after people when they’re ready to reproduce, because blood contains lipids, proteins, and other nutrients needed for the production of eggs.

5. MosquitoEs actually help the environment.

When you’re rubbing calamine lotion all over yourself, mosquitoes might not seem to serve any purpose but to annoy you, but many species play important ecological roles. The mosquitoes Aedes impiger and Aedes nigripes, which gather in thick clouds in Arctic Russia and Canada, are an important food source for migrating birds. Farther south, birds, insects, spiders, salamanders, lizards, frogs, and fish also eat different mosquito species regularly. Plants need them, too, and some, like the blunt-leaved orchid and endangered monkeyface orchid, rely on mosquitoes as their primary pollinator.

Some mosquito species are also excellent at mosquito control. Species of the genus Toxorhynchites feed on the larvae and immature stages of other mosquitoes and will sometimes even cannibalize members of their own species.

6. Mosquitoes are amazing hunters (as if we needed to tell you that).

Mosquitoes are adept at picking up on the chemicals given off by their human hosts. They can detect the carbon dioxide in our breath, the 1-octen-3-ol in our breath and sweat, and other organic substances we produce with the 70-plus types of odor and chemical receptors in their antennae. These receptors can pick up traces of chemicals from hundreds of feet away, and once the mosquito closes in, it tracks its meal chemically and also visually—and they’re fond of people wearing dark colors.

7. Mosquitoes can be picky.

If it seems like you’re always covered head to toe by bites while people who were sitting right next to you only have one or two, it’s not just paranoia; the skeeters actually are out to get you. Some people happen to give off more of the odors and compounds that mosquitoes find simply irresistible, while others emit less of those and more of the compounds that make them unattractive to mosquitoes—either by acting as repellents or by masking the compounds that mosquitoes would find attractive.

8. A female mosquito's mouth is primed for sucking blood.

A mosquito doesn’t simply sink its proboscis into your skin and start sucking. What you see sticking out of a mosquito’s face is the labium, which sheaths the mouthparts that really do all the work. The labium bends back when a mosquito bites, allowing these other parts to pass through its tip and do their thing. The sharp, pointed mandibles and maxillae, which both come in pairs, are used to pierce the skin, and the hollow hypopharynx and the labrum are used to deliver saliva and draw blood, respectively.

9. Mosquito saliva prevents blood clotting.

The saliva that gets pumped out from the hypopharynx during a bite is necessary to get around our blood’s tendency to clot. It contains a grab bag of chemicals that suppress vascular constriction, blood clotting and platelet aggregation, keeping our blood from clogging up the mosquitoes' labrum and ruining their meal.

10. Mosquitoes can explode.

Blood pressure makes a mosquito's meal easier by helping to fill its stomach faster, but urban legend says it can also lead to their doom. Story goes, you can flex a muscle close to the bite site or stretch your skin taut so the mosquito can’t pull out its proboscis and your blood pressure will fill the bug until it bursts. The consensus among entomologists seems to be that this is bunk, but there is a more complicated way of blowing the bugs up. To make a blood bomb, you’ve got to sever the mosquito’s ventral nerve cord, which transmits information about satiety. When it's cut, the cord can’t tell the mosquito’s brain that its stomach is full, so it’ll keep feeding until it reaches critical mass. At least one researcher found that mosquitoes clueless about how full they were would keep sucking even after their guts had exploded, sending showers of blood spilling out of their blown-out back end.

Get The Details On All 21 Successful Moon Landings With This Interactive Map

Astronaut Eugene A. Cernan mans a Lunar Roving Vehicle during the Apollo 17 mission.
Astronaut Eugene A. Cernan mans a Lunar Roving Vehicle during the Apollo 17 mission.
NASA, Wikimedia Commons // Public Domain

In light of Apollo 11’s 50th anniversary this week, the world has focused on those historic first few steps on the Moon and everything that led up to them. But how much do you know about the 20 subsequent Moon landings? To fill you in, Smithsonian.com created an interactive map of the Moon with the who, what, where, when, and how of each successful lunar mission.

The map is color-coded: red for Russian Luna missions, green for China’s Chang'e 3 and Chang'e 4, and blue for the U.S.’s Apollo (marked with stars) and Surveyor missions (simple rings). You can click on each icon to expand a paragraph with a short summary of the mission and its notable accomplishments.

After Russia’s unmanned Luna 9 became the first craft to touch down on the Moon in 1966, 18 other triumphant landings followed in just a decade. The 20th didn’t happen until 37 years later, when China achieved its first landing with Chang'e 3 in 2013. The most recent occurred this past January, when China’s Chang'e 4 became the first spacecraft to land on the far side of the Moon. Chang'e 4 and its rover, Yutu 2, are still exploring the Moon as you read this, and China hopes to launch its follow-up mission, Chang'e 5, as early as this year.

Six Apollo missions landed humans on the Moon, and there haven’t been any actual astronauts on its surface since. But the 15 robotic landings have contributed to our lunar knowledge in a safer, more cost-efficient way. If you look at the map, you can see that most of the spacecrafts have landed near the Moon’s equator on the near side, where the terrain is mostly basaltic plains—the far side contains craters and even mountains. With more Chang'e missions to come from China, and NASA’s Artemis missions in the works, Smithsonian.com may soon have to create a 360° version of its map.

[h/t Smithsonian.com]

SECTIONS

arrow
LIVE SMARTER