Why Were Dinosaurs So Large and Why Don't Animals of That Scale Exist Today?

iStock.com/Kirkikis
iStock.com/Kirkikis

Untorne Nislav:

Before we start, what you need to realize is that dinosaurs were definitely large, but not so large. You probably know the numbers: the largest land mammals ever are around 6–8 meters long (19-26 feet), while the largest dinosaurs were … is it 40 meters (131 feet)?

Damn, what a number!

However, numbers can be veeeery misleading. Look at the second-largest land mammal ever, Indricotherium, and one of the largest dinosaurs, Brachiosaurus, here.

The difference seems to be incomparable …

However …

Those are two entirely different body shapes: most of the brachiosaur's length is used up by its enormous neck and tail. To make it fair, I want you to use your two thumbs: place one over the dinosaur’s neck, and the other over the tail (hopefully, you are not reading this from a touchscreen).

And suddenly, enormous becomes quite … normous. Obviously, Brachiosaurus is still larger than Indricotherium, but it's not four times larger like the numbers would suggest. The real, fair difference between the two is roughly the same as the difference between an elephant and a hippo:

An elephant behind a number of hippos near the water.
iStock.com/JurgaR

Moral of the story: don't let the body shape mislead you.

So here's the answer to the "so large" part of your question: because they weren't.

However, there is still some "true" difference in size to account for. And at least two factors could've contributed to it:

1) Different rules of herbivory.

In the age of mammals, the most effective strategy of herbivory is grazing.

A large herd of wildebeests in a field.
iStock.com/WLDavies

Grasslands are super-effective. The two most productive mammal-dominated ecosystems ever are savannas and (now gone) mammoth steppes: both can feed enormous numbers of huge mammals. With grasses growing at insane rates everywhere, no other food source on Earth can provide for such high mammalian biomasses.

Moral of the story: if you want to grow up big and full, eat grasses.

However, it wasn't always so. In times of dinosaurs, grasses didn't exist. So, the largest animals then were forced to resort to the second-best herbivory strategy: browsing.

image of a brachiosaurus eating leaves from a tree
iStock.com/MR1805

Tree foliage doesn't grow like grasses, yet still there's usually a considerable amount of it per area unit, because it overlaps vertically many times.

Dinosaurs that fed from canopies could afford to grow large: for thermoregulation or defense from predators—usual reasons.

However …

Any animal that grows too big inevitably experiences difficulties with food. At present, any herbivore that became too large would likely just move onto grasses. But dinosaurs couldn't. Hence, the only solution that they had was to grow necks even longer to get even more foliage. But if you grow a larger neck, you also need a larger tail (for balance). Then, you also need broader and thicker bones for all those muscles to attach, stronger legs to support the extra tons of weight, and so on and so on.

Effectively, it was a dead loop: dinosaurs became large, then they grew longer necks to support the growing need for food, which in turn made them become even larger, which in turn further increased their need for food. Browsing herbivory was likely the driving force of sauropod size, and in the end, the only limiting factor was probably the height of the highest canopy.

2) Reproductive limitations

This one doesn't really answer the "why sauropods were large?," but the "why mammals aren't that large?".

A typical sauropod was, effectively, a reproductive frog. It laid dozens if not hundreds of small eggs that hatched into very small babies that had little to do with adults: they occupied very different niches and fed on different food. For sauropods, it killed two problems: firstly, it made pregnancies easy and unnoticeable (which is a factor when you weighed 60 metric tons), and secondly, it removed competition for food between adults and babies.

In other words, sauropods could afford to become as large as necessary without worrying much about how it would affect their pregnancy and reproduction.

On the contrary, being a pregnant 60-tonne (66-ton) mammal is a nightmare—of a real and deadly kind.

All (placental) mammals bear relatively large offspring. However, if you weighed 60 tonnes, that would be … what, 2 tonnes (4400 pounds) heavy offspring? Carrying extra 10 kilograms (22 pounds) of weight at the peak of pregnancy is difficult enough for humans, but having to carry 10 extra tonnes (22,000 pounds) is just impossible, unless you are a whale and swim.

Not to mention that it would be a very long pregnancy.

Not to mention that pregnant females require even more food.

Not to mention that the young must be fed, only to grow up to compete with you for the same food later.

Moral of the story: children are expensive … unless you are a frog or a sauropod.

Q: How about livebearing smaller babies?

There are two problems with this. Firstly, it just doesn't happen. There are relatively small newborns in some placental mammals, but nothing like the difference between sauropod adults and babies.

Secondly, if babies are too small, then they become unavailable for social interactions: in fact, they are better to stay away from parents immediately to avoid being stomped on. Social behavior and learning are the backbone of mammalian success. Trying to get rid of it just isn't worth it.

So in the end, dinosaurs that weren't so large were large because they bred like frogs and because their kitchen was … a little underrepresented.

This post originally appeared on Quora. Click here to view.

Why Are Sloths So Slow?

Sloths have little problem holding still for nature photographers.
Sloths have little problem holding still for nature photographers.
Geoview/iStock via Getty Images

When it comes to physical activity, few animals have as maligned a reputation as the sloth. The six sloth species, which call Brazil and Panama home, move with no urgency, having seemingly adapted to an existence that allows for a life lived in slow motion. But what makes sloths so sedate? And what horrible, poop-related price must they pay in order to maintain life in the slow lane?

According to HowStuffWorks, the sloth’s limited movements are primarily the result of their diet. Residing mainly in the canopy vines of Central and South American forests, sloths dine out on leaves, fruits, and buds. With virtually no fat or protein, sloths conserve energy by taking a leisurely approach to life. On average, a sloth will climb or travel roughly 125 feet per day. On land, it takes them roughly one minute to move just one foot.

A sloth’s digestive system matches their locomotion. After munching leaves using their lips—they have no incisors—it can take up to a month for their meals to be fully digested. And a sloth's metabolic rate is 40 to 45 percent slower than most mammals' to help compensate for their low caloric intake. With so little fuel to burn, a sloth makes the most of it.

Deliberate movement shouldn’t be confused for weakness, however. Sloths can hang from branches for hours, showing off some impressive stamina. And because they spend most of their time high up in trees, they have no need for rapid movement to evade predators.

There is, however, one major downside to the sloth's leisurely lifestyle. Owing to their meager diet, they typically only have to poop once per week. Like going in a public bathroom, this can be a stressful event, as it means going to the ground and risking detection by predators—which puts their lives on the line. Worse, that slow bowel motility means they’re trying to push out nearly one-third of their body weight in feces at a time. It's something to consider the next time you feel envious of their chill lifestyle.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Are Any of the Scientific Instruments Left on the Moon By the Apollo Astronauts Still Functional?

Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Heritage Space/Heritage Images/Getty Images

C Stuart Hardwick:

The retroreflectors left as part of the Apollo Lunar Ranging Experiment are still fully functional, though their reflective efficiency has diminished over the years.

This deterioration is actually now delivering valuable data. The deterioration has multiple causes including micrometeorite impacts and dust deposition on the reflector surface, and chemical degradation of the mirror surface on the underside—among other things.

As technology has advanced, ground station sensitivity has been repeatedly upgraded faster than the reflectors have deteriorated. As a result, measurements have gotten better, not worse, and measurements of the degradation itself have, among other things, lent support to the idea that static electric charge gives the moon an ephemeral periodic near-surface pseudo-atmosphere of electrically levitating dust.

No other Apollo experiments on the moon remain functional. All the missions except the first included experiment packages powered by radiothermoelectric generators (RTGs), which operated until they were ordered to shut down on September 30, 1977. This was done to save money, but also because by then the RTGs could no longer power the transmitters or any instruments, and the control room used to maintain contact was needed for other purposes.

Because of fears that some problem might force Apollo 11 to abort back to orbit soon after landing, Apollo 11 deployed a simplified experiment package including a solar-powered seismometer which failed after 21 days.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER