The beauty of scientific research is that scientists never really know where a particular development might lead. Research on Gila monster venom has led to the invention of medication that helps manage type 2 diabetes, and enzymes discovered in the hot springs of Yellowstone National Park are now widely used for DNA replication, a technique used by forensic scientists to analyze crime scenes.
The same rule of thumb applies to NASA scientists, whose work has found dozens of applications outside of space exploration—especially in medicine.
Take the Hubble Space Telescope. Launched in 1990, the Hubble has graced us with stunning, intimate photographs of our solar system. But it wasn't always that way—when the telescope was launched, the first images beamed back to earth were awfully fuzzy. The image processing techniques NASA created to solve this problem not only sharpened Hubble's photos, but also had an unexpected benefit: Making mammograms more accurate.
As NASA reports, "When applied to mammograms, software techniques developed to increase the dynamic range and spatial resolution of Hubble's initially blurry images allowed doctors to spot smaller calcifications than they could before, leading to earlier detection and treatment."
That's because the Hubble Space Telescope contains a technology called Charge-Coupled Devices, or CCDs, which are basically electron-trapping gizmos capable of digitizing beams of light. Today, CCDs allow "doctors to analyze the tissue by stereotactic biopsy, which requires a needle rather than surgery," NASA says [PDF]. Back in 1994, NASA predicted that this advancement could reduce national health care costs by approximately $1 billion every year.
And that's just one of the tools NASA has developed that's now being used to fight breast cancer. When cancer researcher Dr. Susan Love was having trouble studying breast ducts—where breast cancer often originates—she turned to research coming out of NASA's Jet Propulsion Laboratory. As Rosalie Chan reports for the Daily Beast, the Jet Propulsion Lab has dedicated vast resources to avoiding the spread of earthly contaminants in space, and its research has included the development of a genomic sequencing technology that is "clean and able to analyze microscopic levels of biomass." As Dr. Love discovered, the same technology is a fantastic way to test for cancer-linked microorganisms in breast duct tissue.
A second technology developed at NASA's Jet Propulsion Laboratory—the Quantum Well Infrared Photodetector, or QWIP—enables humans to see invisible infrared light in a spectrum of colors, helping scientists discover caves on Mars and study volcanic emissions here on Earth. But it's also useful at the doctor's office: A QWIP medical sensor can detect tiny changes in the breast's blood flow—a sign of cancer—extremely early.
And as any doctor will tell you, that's huge: The earlier cancer is detected, the greater a person's chance of survival.