Wasps Have the Ability to Use Logic, According to a New Study

iStock.com/Antagain
iStock.com/Antagain

Your reaction to wasps probably consists of mild panic over a possible sting, followed by a quick escape indoors and concern over whether a nest is taking up residence on your property. New research into their behavioral processes may not minimize that reaction, but it could give you some newfound respect for these winged wonders. They're not only smart, but they might even be better at deducing logic than some humans.

A recent study by researchers at the University of Michigan and published in the journal Royal Society Biology Letters took 40 wasps (of the Polistes dominula and Polistes metricus species) and put each one of them into a rectangular container that featured one of five different colors at each end. Each color was labeled from A to E, though that was more to assign the colors a hierarchy for the human observers.

Researchers attempted to educate the wasps on the sequence of colors, with boxes labeled A and B, B and C, C and D, and D and E. An electric shock was housed under the later letter of the alphabet in each pair. If a container had colors labeled B and C, for example, the shock would be under the C. In this way, the wasps learned which color was "better." Blue was better than green, and green was better than purple. But could the wasps understand blue was better than purple?

To find out, the wasps were then placed in containers with colors marked B and D and A and E. In order to avoid getting a shock, the wasps would have to understand a color higher up in the letter ranking was associated with the shock. Over 65 percent chose B over D, better than chance, and A over E. (The latter was an easier decision, as E always delivered a jolt.)

This kind of reasoning is known as transitive inference, or the ability to take two separate bits of information and draw conclusions. The wasps knew B delivered a shock over A, and that D delivered one over C, but not that D delivered one over B. They had to extrapolate that based on independent experience.

The report is said to be the first indication invertebrates can use logical deduction. It might be related to the wasp hierarchy, where the insects are confronted with figuring out who holds dominant roles in their society.

This isn't the first time wasps have impressed scientists, either. An earlier study showed that they can identify facial patterns in other wasps, and recognize them during subsequent encounters.

[h/t New Scientist]

The Best Place to Park at the Mall, According to Science

Diy13/iStock via Getty Images Plus
Diy13/iStock via Getty Images Plus

It’s Black Friday, and you are entering the battlefield: a mall parking lot. You’re determined to nail that doorbuster deal, and quantities are limited. The field is already full of other combatants. You must find the perfect parking spot.

Do you grab the first one you see, or drive as close to the mall as you can and hover? Or, do you choose a tactic that lies somewhere between?

Parking at the mall has long frustrated drivers and taxed the minds of traffic engineers—but after working on the problem for three years, physicists Sidney Redner of the Santa Fe Institute and Paul Krapivsky of Boston University have gotten closer to a winning strategy. “There are lots of studies of parking lots, but it’s just that they’re so complicated, you don’t get any insight into what’s actually happening,” Redner tells Mental Floss.

Redner and Krapivsky, whose work employs statistical physics to make sense of large systems, simplified the messy dynamics of a parking lot by modeling it with a one-dimensional grid of cells, each representing a parking space. They tested three simple, yet realistic, parking strategies using basic probability theory. Their model tested the following strategies to see which one resulted in least time spent walking and driving in the parking lot:

Meek Strategy: Meek drivers park in the first open space they see, however distant it is from the mall. As a result, they often spend the most time walking to and from the mall.

Prudent Strategy: Prudent drivers look for the first open spot but then keep driving toward the mall. They continue to drive until they see a parked car and then park in the best open spot between that first open spot and that first parked car. There may be a block of open spaces between the first open space and the first parked car. From that block of open spaces, they choose the one closest to the mall.

Optimistic Strategy: Optimistic drivers drive as close to the mall as possible and look for a parking space close to the entrance. If they see one, they grab it. If there are none, they backtrack and choose the first open space they see. Optimistic drivers probably spend the most time driving and the least time walking. In the worst-case scenario, they end up parking back where a meek driver would have parked.

Naturally cautious drivers are more likely to default to the meek mode, while aggressive drivers often use the optimistic strategy, well, aggressively. And most drivers have tried something like the prudent method.

So, which is your best bet in a crowded mall parking lot this holiday season?

In the experiments, the prudent strategy fared best, followed closely by the optimistic strategy. The meek strategy finished a distant third (“It’s hard to comprehend just how bad it is,” says Krapivsky, a self-described meek driver).

And even better: The more crowded the lot, the better the prudent strategy works, he adds.

One clear takeaway from the study is that meek drivers may want to ramp up their parking skills before going to the mall. “You don't want to park on the very outskirts of the lot, like a mile away from the stores. You want to go to the first place there’s an open spot and park somewhere in that first open area,” Redner says. They published their findings in the Journal of Statistical Mechanics [PDF].

The researchers say this is the best of the strategies they tested, but it has its limitations. It does not take into consideration competition among a sea of drivers all looking for parking spaces at the same time, and it doesn’t include (perhaps optimistically) the psychological aspects of operating a vehicle. “We are not rational when we are driving,” Krapivsky tells Mental Floss.

The researchers’ one-dimensional grid model also assumed that there would be one car at a time entering the lot through one entrance, unlike messier lots in the real world, where many cars enter from a multitude of entrances.

The optimal parking strategy, one that would best all others every time, has yet to be found. In their research, though, Redner and Krapivsky are homing in on one that integrates the more complicated aspects of parking.

For now, science says prudence is a virtue in the parking lot. And while the meek might inherit the Earth, they certainly won’t find the best parking space at the mall.

'Lost Species' of Tiny, Rabbit-Sized Deer Photographed in Vietnam for the First Time in 30 Years

Global Wildlife Conservation
Global Wildlife Conservation

The silver-backed chevrotain, also called the Vietnamese mouse-deer, is elusive. It's so elusive that scientists had feared it was extinct after none had been photographed for decades. But as The Washington Post reports, the first images taken of the mammal in nearly 30 years prove that the species is still alive in the woods of Vietnam.

No larger than small dogs, chevrotains are the tiniest ungulates, or hoofed animals, on Earth. They have vampire-like fangs and skinny legs that support their bodies. Silver-backed chevrotains are characterized by the silver sheen of their tawny coat.

The tiny population native to Vietnam has been devastated by poachers in recent decades. That, and the animal's natural shyness, make it incredibly difficult to study. Before this most recent sighting, the last time scientists had recorded one was in 1990.

Global Wildlife Conservation, the Southern Institute of Ecology, and the Leibniz Institute for Zoo and Wildlife Research teamed up in hopes of documenting the lost species. Researchers interviewed residents and government forest rangers in the Vietnamese city of Nha Trang about the silver-backed chevrotain, looking for tips on where to find one. Residents said that while populations had been hit hard by hunting, the animals were still around.

Based on this local ecological knowledge, scientists set up three camera traps in the Vietnamese woods. In just five months, they captured 275 photographs of the little mouse-deer. They then installed 29 additional cameras and snapped 1881 new images in that same length of time.

“For so long this species has seemingly only existed as part of our imagination," Global Wildlife Conservation associate conservation scientist An Nguyen said in a statement. "Discovering that it is, indeed, still out there, is the first step in ensuring we don’t lose it again, and we’re moving quickly now to figure out how best to protect it.”

Now that a silver-backed chevrotain population has been located, researchers plan to conduct the first-ever comprehensive survey of the species. Once the data is collected, it will be used to build a plan for the species' survival.

[h/t The Washington Post]

SECTIONS

arrow
LIVE SMARTER