The Best Place to Park at the Mall, According to Science

Diy13/iStock via Getty Images Plus
Diy13/iStock via Getty Images Plus

It’s Black Friday, and you are entering the battlefield: a mall parking lot. You’re determined to nail that doorbuster deal, and quantities are limited. The field is already full of other combatants. You must find the perfect parking spot.

Do you grab the first one you see, or drive as close to the mall as you can and hover? Or, do you choose a tactic that lies somewhere between?

Parking at the mall has long frustrated drivers and taxed the minds of traffic engineers—but after working on the problem for three years, physicists Sidney Redner of the Santa Fe Institute and Paul Krapivsky of Boston University have gotten closer to a winning strategy. “There are lots of studies of parking lots, but it’s just that they’re so complicated, you don’t get any insight into what’s actually happening,” Redner tells Mental Floss.

Redner and Krapivsky, whose work employs statistical physics to make sense of large systems, simplified the messy dynamics of a parking lot by modeling it with a one-dimensional grid of cells, each representing a parking space. They tested three simple, yet realistic, parking strategies using basic probability theory. Their model tested the following strategies to see which one resulted in least time spent walking and driving in the parking lot:

Meek Strategy: Meek drivers park in the first open space they see, however distant it is from the mall. As a result, they often spend the most time walking to and from the mall.

Prudent Strategy: Prudent drivers look for the first open spot but then keep driving toward the mall. They continue to drive until they see a parked car and then park in the best open spot between that first open spot and that first parked car. There may be a block of open spaces between the first open space and the first parked car. From that block of open spaces, they choose the one closest to the mall.

Optimistic Strategy: Optimistic drivers drive as close to the mall as possible and look for a parking space close to the entrance. If they see one, they grab it. If there are none, they backtrack and choose the first open space they see. Optimistic drivers probably spend the most time driving and the least time walking. In the worst-case scenario, they end up parking back where a meek driver would have parked.

Naturally cautious drivers are more likely to default to the meek mode, while aggressive drivers often use the optimistic strategy, well, aggressively. And most drivers have tried something like the prudent method.

So, which is your best bet in a crowded mall parking lot this holiday season?

In the experiments, the prudent strategy fared best, followed closely by the optimistic strategy. The meek strategy finished a distant third (“It’s hard to comprehend just how bad it is,” says Krapivsky, a self-described meek driver).

And even better: The more crowded the lot, the better the prudent strategy works, he adds.

One clear takeaway from the study is that meek drivers may want to ramp up their parking skills before going to the mall. “You don't want to park on the very outskirts of the lot, like a mile away from the stores. You want to go to the first place there’s an open spot and park somewhere in that first open area,” Redner says. They published their findings in the Journal of Statistical Mechanics [PDF].

The researchers say this is the best of the strategies they tested, but it has its limitations. It does not take into consideration competition among a sea of drivers all looking for parking spaces at the same time, and it doesn’t include (perhaps optimistically) the psychological aspects of operating a vehicle. “We are not rational when we are driving,” Krapivsky tells Mental Floss.

The researchers’ one-dimensional grid model also assumed that there would be one car at a time entering the lot through one entrance, unlike messier lots in the real world, where many cars enter from a multitude of entrances.

The optimal parking strategy, one that would best all others every time, has yet to be found. In their research, though, Redner and Krapivsky are homing in on one that integrates the more complicated aspects of parking.

For now, science says prudence is a virtue in the parking lot. And while the meek might inherit the Earth, they certainly won’t find the best parking space at the mall.

Here’s What You Need to Know About the New Coronavirus

jarun011/iStock via Getty Images
jarun011/iStock via Getty Images

This morning, the Centers for Disease Control and Prevention (CDC) confirmed the second case of the recently discovered coronavirus in the U.S. Find out what it is, where it is, how to avoid it, and all the other need-to-know information about the illness below.

What is the new coronavirus?

Coronaviruses are a group of viruses named for the crown-shaped spikes that cover their surfaces (corona is the Latin word for crown). According to the CDC, human coronaviruses can cause upper-respiratory tract illnesses, including the common cold, and can sometimes lead to more severe lower-respiratory tract issues like pneumonia or bronchitis.

Because this latest coronavirus, 2019-nCoV, is so new, health officials are currently trying to figure out how it works and how to treat it. It’s not the first time a potent new coronavirus has caused an international outbreak: SARS-CoV originated in Asia and spread to more than two dozen countries in 2003, and MERS-CoV first infected people in Saudi Arabia before spreading across the globe in 2012.

Where is the coronavirus outbreak happening?

The majority of cases are in China, which counts more than 800 confirmed diagnoses. Most are in Wuhan, a city in China’s Hubei province where 2019-nCoV was first detected last month. Additional cases have been reported in South Korea, Japan, Singapore, Hong Kong, Macao, Taiwan, Thailand, and Vietnam.

The CDC has confirmed two U.S. cases—a man in his thirties outside Seattle, and a 60-year-old woman in Chicago—both of whom had recently returned from trips to Wuhan. A CDC official said another 63 potential cases are being investigated in 22 states, and airports in New York, Chicago, Los Angeles, Atlanta, and San Francisco are conducting health screenings on passengers arriving from China.

Chinese officials have shut down transportation to and from Wuhan. Tourist spots like Beijing’s Forbidden City, Shanghai Disneyland, and a portion of the Great Wall are also closed temporarily.

What are the symptoms of the new coronavirus?

Symptoms are similar to those caused by a cold or the flu, including fever, dry cough, and breathing difficulty. The New York Times reported that as of Friday morning, 25 people in China have died from the virus, and most of them were older men with preexisting health conditions like cirrhosis, diabetes, and Parkinson’s disease.

How does the new coronavirus spread?

Because most of the early cases of 2019-nCoV were traced back to a seafood and meat market in Wuhan, health officials think the virus originally spread from infected animals to humans, but it’s now being transmitted from person to person.

Though scientists are still studying exactly how that happens, the leading theory is that it travels in tiny droplets of fluid from the respiratory tract when a person coughs or sneezes.

How do you avoid the new coronavirus?

The CDC is warning everyone to avoid any nonessential trips to Wuhan, and to avoid animals or sick people if you’re traveling elsewhere in China. If you’ve been to China in the last two weeks and experience any of the symptoms listed above, you should seek medical attention immediately—and you should call the doctor’s office or emergency room beforehand to let them know you’re coming.

Otherwise, simply stick to the precautions you’d normally take when trying to stay healthy: Wash your hands often with soap and water, cover your nose and mouth when coughing or sneezing, stay away from sick people, and thoroughly cook any meat or eggs before eating them.

Should you be worried about the new coronavirus?

The global health community is taking 2019-nCoV seriously in order to curb the outbreak as quickly as possible, but you shouldn’t panic. The CDC maintains that it’s a low-risk situation in the U.S., and public health officials are echoing that message.

“We don’t want the American public to be worried about this, because their risk is low,” Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, told USA Today.

[h/t USA Today]

Has An Element Ever Been Removed From the Periodic Table?

lucadp/iStock via Getty Images
lucadp/iStock via Getty Images

Barry Gehm:

Yes, didymium, or Di. It was discovered by Carl Mosander in 1841, and he named it didymium from the Greek word didymos, meaning twin, because it was almost identical to lanthanum in its properties. In 1879, a French chemist showed that Mosander’s didymium contained samarium as well as an unknown element. In 1885, Carl von Weisbach showed that the unknown element was actually two elements, which he isolated and named praseodidymium and neodidymium (although the di syllable was soon dropped). Ironically, the twin turned out to be twins.

The term didymium filter is still used to refer to welding glasses colored with a mixture of neodymium and praseodymium oxides.

One might cite as other examples various claims to have created/discovered synthetic elements. Probably the best example of this would be masurium (element 43), which a team of German chemists claimed to have discovered in columbium (now known as niobium) ore in 1925. The claim was controversial and other workers could not replicate it, but some literature from the period does list it among the elements.

In 1936, Emilio Segrè and Carlo Perrier isolated element 43 from molybdenum foil that had been used in a cyclotron; they named it technetium. Even the longest-lived isotopes of technetium have a short half-life by geological standards (millions of years) and it has only ever been found naturally in minute traces as a product of spontaneous uranium fission. For this reason, the original claim of discovery (as masurium) is almost universally regarded as erroneous.

As far as I know, in none of these cases with synthetic elements has anyone actually produced a quantity of the element that one could see and weigh that later turned out not to be an element, in contrast to the case with didymium. (In the case of masurium, for instance, the only evidence of its existence was a faint x-ray signal at a specific wavelength.)

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER