Why Are There Crushed Stones Alongside Railroad Tracks?

iStock
iStock


Why are there crushed stones alongside rail tracks?David S. Rose:This is a good question with an interesting answer. The crushed stones are what is known as ballast. Their purpose is to hold the wooden cross ties in place, which in turn hold the rails in place.Think about the engineering challenge faced by running miles of narrow ribbons of steel track on top of the ground: they are subject to heat expansion and contraction, ground movement and vibration, precipitation buildup from rough weather, and weed and plant growth from underneath. Now keep in mind that while 99 percent of the time they are just sitting there unburdened, the remaining one percent of the time they are subject to moving loads as heavy as one million pounds (the weight of a Union Pacific Big Boy locomotive and its tender).

Put all this together, and you have yourself a really, really interesting problem that was first solved nearly 200 years ago, and hasn't been significantly improved since.

The answer is to start with the bare ground, and then build up a foundation to raise the track high enough so it won't get flooded. On top of the foundation, you deposit a load of crushed stone (the ballast). On top of the stone, you lay down (perpendicular to the direction of the track) a line of wooden beams on 19.5 inch centers, 8.5 feet long, 9 inches wide and 7 inches thick, weighing about 200 pounds ... 3249 of them per mile. You then continue to dump crushed stone all around the beams. The sharp edges of the stone make it difficult for them to slide over each other (in the way that smooth, round pebbles would), thus effectively locking them in place.



The beams are made of hardwood (usually oak or hickory), and impregnated with creosote for weather protection. In the U.S. we call them "cross ties" (or, colloquially, just "railroad ties"); in the UK they are known as "sleepers"; European Portuguese, "travessas"; Brazilian Portuguese, "dormentes"; Russian, шпала (read "shpala"); French "traverses." While 93 percent of ties in the U.S. are still made of wood, heavily trafficked modern rail lines are increasingly trying alternatives, including composite plastic, steel, and concrete.

Next, you bring in hot-rolled steel rails, historically 39' long in the U.S. (because they were carried to the site in 40' gondola cars), but increasingly now 78', and lay them on top of the ties, end to end. They used to be joined by bolting on an extra piece of steel (called a "fishplate") across the side of the joint, but today are usually continuously welded end-to-end.

It would seem that you could just nail them or bolt them down to the ties, but that won't work. The non-trivial movement caused by heat expansion and contraction along the length of the rail would cause it to break or buckle if any of it were fixed in place. So instead, the rails are attached to the sleepers by clips or anchors, which hold them down but allow them to move longitudinally as they expand or contract.

So there you have it: a centuries-old process that is extremely effective at facilitating the movement of people and material over thousands of miles ... even though nothing is permanently attached to the ground with a fixed connection!

The ballast distributes the load of the ties (which, in turn, bear the load of the train on the track, held by clips) across the foundation, allows for ground movement, thermal expansion and weight variance, allows rain and snow to drain through the track, and inhibit the growth of weeds and vegetation that would quickly take over the track.

This post originally appeared on Quora. Click here to view.

Why Are Sloths So Slow?

Sloths have little problem holding still for nature photographers.
Sloths have little problem holding still for nature photographers.
Geoview/iStock via Getty Images

When it comes to physical activity, few animals have as maligned a reputation as the sloth. The six sloth species, which call Brazil and Panama home, move with no urgency, having seemingly adapted to an existence that allows for a life lived in slow motion. But what makes sloths so sedate? And what horrible, poop-related price must they pay in order to maintain life in the slow lane?

According to HowStuffWorks, the sloth’s limited movements are primarily the result of their diet. Residing mainly in the canopy vines of Central and South American forests, sloths dine out on leaves, fruits, and buds. With virtually no fat or protein, sloths conserve energy by taking a leisurely approach to life. On average, a sloth will climb or travel roughly 125 feet per day. On land, it takes them roughly one minute to move just one foot.

A sloth’s digestive system matches their locomotion. After munching leaves using their lips—they have no incisors—it can take up to a month for their meals to be fully digested. And a sloth's metabolic rate is 40 to 45 percent slower than most mammals' to help compensate for their low caloric intake. With so little fuel to burn, a sloth makes the most of it.

Deliberate movement shouldn’t be confused for weakness, however. Sloths can hang from branches for hours, showing off some impressive stamina. And because they spend most of their time high up in trees, they have no need for rapid movement to evade predators.

There is, however, one major downside to the sloth's leisurely lifestyle. Owing to their meager diet, they typically only have to poop once per week. Like going in a public bathroom, this can be a stressful event, as it means going to the ground and risking detection by predators—which puts their lives on the line. Worse, that slow bowel motility means they’re trying to push out nearly one-third of their body weight in feces at a time. It's something to consider the next time you feel envious of their chill lifestyle.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Are Any of the Scientific Instruments Left on the Moon By the Apollo Astronauts Still Functional?

Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Apollo 11 astronaut Neil Armstrong left the first footprint on the Moon on July 20, 1969.
Heritage Space/Heritage Images/Getty Images

C Stuart Hardwick:

The retroreflectors left as part of the Apollo Lunar Ranging Experiment are still fully functional, though their reflective efficiency has diminished over the years.

This deterioration is actually now delivering valuable data. The deterioration has multiple causes including micrometeorite impacts and dust deposition on the reflector surface, and chemical degradation of the mirror surface on the underside—among other things.

As technology has advanced, ground station sensitivity has been repeatedly upgraded faster than the reflectors have deteriorated. As a result, measurements have gotten better, not worse, and measurements of the degradation itself have, among other things, lent support to the idea that static electric charge gives the moon an ephemeral periodic near-surface pseudo-atmosphere of electrically levitating dust.

No other Apollo experiments on the moon remain functional. All the missions except the first included experiment packages powered by radiothermoelectric generators (RTGs), which operated until they were ordered to shut down on September 30, 1977. This was done to save money, but also because by then the RTGs could no longer power the transmitters or any instruments, and the control room used to maintain contact was needed for other purposes.

Because of fears that some problem might force Apollo 11 to abort back to orbit soon after landing, Apollo 11 deployed a simplified experiment package including a solar-powered seismometer which failed after 21 days.

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER