8 Surprising Facts About Your Nose

iStock/AntonioGuillem
iStock/AntonioGuillem

Your nose is more than just a bump on your face—it’s an important part of the respiratory system and affects many other senses, including your taste and hearing. For being something that’s so central to our daily interactions with the world, there’s still a surprising amount to discover about the nose. Here's a bit of what we do know.

1. Your nose can detect billions of different odors.

Although the human nose is weak compared to canine sniffers, our noses can detect 1 trillion smells. Strangely, scientists still aren’t sure exactly how we smell. For decades, researchers thought the olfactory system worked through receptor binding, meaning molecules of different shapes and sizes bonded to specific parts of the nose like puzzle pieces, triggering smell recognition in the brain. But recently, biophysicist Luca Turin has proposed the nose detects smell through quantum vibrations. Turin suggests the frequency at which different molecules vibrate helps the nose identify them as different scents. The theory could explain why molecules of the same shape smell quite differently. Intriguing as it is, this new theory hasn’t been tested enough to be universally accepted.

2. Our big brains might have caused our noses to protrude.

As anyone who’s been to a zoo probably knows, great apes (the closest human ancestors) have flat nasal openings—and researchers found that type of nose is far more effective at inhaling air than the human version. So what’s up with ours? Scientists think the shape might be a by-product of our big brain. The growing cerebellum forced human faces to become smaller, which probably affected the nose as well.

3. Women's noses are more sensitive than men's.

In the battle of the sexes, women’s noses come out on top. When tested for odor detection and identification, women score consistently higher than men. This might have something to do with the size of their olfactory bulb, a structure in the brain that helps humans identify smells. One study found that women have, on average, 43 percent more cells in their olfactory bulb than men do—meaning they can smell more smells.

4. Holding your nose really does help you swallow something distasteful.

Think you like chocolate just because it tastes good? Think again. Smell is responsible for 75 to 95 percent of flavor, which explains why plugging your nose helps you swallow something unappetizing. More recently, chefs and neurologists have teamed up to create meals for cancer patients and others with a diminished sense of smell, such as the elderly. Cooking meals tailored to the smell-less could help stave off depression and improve the appetite without relying on sugar and salt.

5. Surgeons can regrow damaged noses.

When people have cancer or are in an accident, the nose can become infected or even be completely destroyed. But fear not. Plastic surgeons have a way to regrow your nose—on your forehead. Using cartilage from the ribs and tissue expanders that allow the skin to stretch and grow, a new nose can be formed to replace the old one. And while a nose growing out of your forehead looks odd, it's actually one of the best places for a new nose to grow. The forehead's blood vessels can be harnessed to help grow the tissue, and removing the new nose only leaves a small scar [PDF]. Doctors have performed the procedure in the U.S., China, and India.

6. Your nose can sense more than smells.

The nose doesn’t just translate odors in the nasal passage—the tip is also full of nerves that detect pain and temperature. This helps us “smell” non-odor smells. Even people who can no longer smell things with their olfactory system can detect substances like menthol, the minty compound that makes your skin tingle. (Unfortunately, they can’t detect pure scents like vanilla.)

7. About 20,000 liters of air pass through the nose every day.

The average adult breathes around 20,000 liters of air every day, which keeps the nose quite busy. As the first line of defense for the lungs, the nose filters out small particles like pollen and dust. It also adds moisture to the air and warms it so the lungs are saved from any irritation.

8. Anosmia is just one of several smell disorders affecting the nose.

There are plenty of things that can go wrong in your nose. Allergic rhinitis, sinus infections, and broken noses are just a few. But perhaps less well known are disorders that affect the nose’s ability to smell. Anosmia is the complete inability to detect odors and can be caused by illness, aging, radiation, chemical exposure, or even genetics. Equally bizarre are parosmia and phantosmia: The former changes your perception of smells, and the latter creates the perception of smells that don’t exist. Luckily, only 1 or 2 percent of North Americans suffer from any smell disorders.

7 Facts About Blood

Moussa81/iStock via Getty Images
Moussa81/iStock via Getty Images

Everyone knows that when you get cut, you bleed—a result of the constant movement of blood through our bodies. But do you know all of the functions the circulatory system actually performs? Here are some surprising facts about human blood—and a few cringe-worthy theories that preceded the modern scientific understanding of this vital fluid.

1. Doctors still use bloodletting and leeches to treat diseases.

Ancient peoples knew the circulatory system was important to overall health. That may be one reason for bloodletting, the practice of cutting people to “cure” everything from cancer to infections to mental illness. For the better part of two millennia, it persisted as one of the most common medical procedures.

Hippocrates believed that illness was caused by an imbalance of four “humors”—blood, phlegm, black bile, and yellow bile. For centuries, doctors believed balance could be restored by removing excess blood, often by bloodletting or leeches. It didn’t always go so well. George Washington, for example, died soon after his physician treated a sore throat with bloodletting and a series of other agonizing procedures.

By the mid-19th century, bloodletting was on its way out, but it hasn’t completely disappeared. Bloodletting is an effective treatment for some rare conditions like hemochromatosis, a hereditary condition causing your body to absorb too much iron.

Leeches have also made a comeback in medicine. We now know that leech saliva contains substances with anti-inflammatory, antibiotic, and anesthetic properties. It also contains hirudin, an enzyme that prevents clotting. It lets more oxygenated blood into the wound, reducing swelling and helping to rebuild tiny blood vessels so that it can heal faster. That’s why leeches are still sometimes used in treating certain circulatory diseases, arthritis, and skin grafting, and helps reattach fingers and toes. (Contrary to popular belief, even the blood-sucking variety of leech is not all that interested in human blood.)

2. Scientists didn't understand how blood circulation worked until the 17th century.

William Harvey, an English physician, is generally credited with discovering and demonstrating the mechanics of circulation, though his work developed out of the cumulative body of research on the subject over centuries.

The prevailing theory in Harvey’s time was that the lungs, not the heart, moved blood through the body. In part by dissecting living animals and studying their still-beating hearts, Harvey was able to describe how the heart pumped blood through the body and how blood returned to the heart. He also showed how valves in veins helped control the flow of blood through the body. Harvey was ridiculed by many of his contemporaries, but his theories were ultimately vindicated.

3. Blood types were discovered in the early 20th century.

Austrian physician Karl Landsteiner discovered different blood groups in 1901, after he noticed that blood mixed from people with different types would clot. His subsequent research classified types A, B and O. (Later research identified an additional type, AB). Blood types are differentiated by the kinds of antigens—molecules that provoke an immune system reaction—that attach to red blood cells.

People with Type A blood have only A antigens attached to their red cells but have B antigens in their plasma. In those with Type B blood, the location of the antigens is reversed. Type O blood has neither A nor B antigens on red cells, but both are present in the plasma. And finally, Type AB has both A and B antigens on red cells but neither in plasma. But wait, there’s more! When a third antigen, called the Rh factor, is present, the blood type is classified as positive. When Rh factor is absent, the blood type is negative.

Scientists still don’t understand why humans have different blood types, but knowing yours is important: Some people have life-threatening reactions if they receive a blood type during a transfusion that doesn’t “mix” with their own. Before researchers developed reliable ways to detect blood types, that tended to turn out badly for people receiving an incompatible human (or animal!) blood transfusion.

4. Blood makes up about 8 percent of our total body weight.

Adult bodies contain about 5 liters (5.3 quarts) of blood. An exception is pregnant women, whose bodies can produce about 50 percent more blood to nourish a fetus.)

Plasma, the liquid portion of blood, accounts for about 3 liters. It carries red and white blood cells and platelets, which deliver oxygen to our cells, fight disease, and repair damaged vessels. These cells are joined by electrolytes, antibodies, vitamins, proteins, and other nutrients required to maintain all the other cells in the body.

5. A healthy red blood cell lasts for roughly 120 days.

Red blood cells contain an important protein called hemoglobin that delivers oxygen to all the other cells in our bodies. It also carries carbon dioxide from those cells back to the lungs.

Red blood cells are produced in bone marrow, but not everyone produces healthy ones. People with sickle cell anemia, a hereditary condition, develop malformed red blood cells that get stuck in blood vessels. These blood cells last about 10 to 20 days, which leads to a chronic shortage of red blood cells, often causing to pain, infection, and organ damage.

6. Blood might play a role in treating Alzheimer's disease.

In 2014, research led by Stanford University scientists found that injecting the plasma of young mice into older mice improved memory and learning. Their findings follow years of experiments in which scientists surgically joined the circulatory systems of old and young mice to test whether young blood could reverse signs of aging. Those results showed rejuvenating effects of a particular blood protein on the organs of older mice.

The Stanford team’s findings that young blood had positive effects on mouse memory and learning sparked intense interest in whether it could eventually lead to new treatments for Alzheimer’s disease and other age-related conditions.

7. The sight of blood can make people faint.

For 3 to 4 percent of people, squeamishness associated with blood, injury, or invasive medical procedures like injections rises to the level of a true phobia called blood injury injection phobia (BII). And most sufferers share a common reaction: fainting.

Most phobias cause an increase in heart rate and blood pressure, and often muscle tension, shakes, and sweating: part of the body’s sympathetic nervous system’s “fight or flight” response. But sufferers of BII experience an added symptom. After initially increasing, their blood pressure and heart rate will abruptly drop.

This reaction is caused by the vagus nerve, which works to keep a steady heart rate, among other things. But the vagus nerve sometimes overdoes it, pushing blood pressure and heart rate too low. (You may have experienced this phenomenon if you’ve ever felt faint while hungry, dehydrated, startled, or standing up too fast.) For people with BII, the vasovagal response can happen at the mere sight or suggestion of blood, needles, or bodily injury, making even a routine medical or dental checkup cause for dread and embarrassment.

What Purpose Does the Belly Button Serve?

misuma/iStock via Getty Images
misuma/iStock via Getty Images

While your eyelashes are protecting your eyes, your lungs are letting you breathe, and virtually every other part of your body—inside and out—is performing its own relatively well-known task, your belly button is just sitting there collecting lint. And while it’s true that your navel served its most important purpose before you were born, it’s not totally useless now.

According to ZME Science, back when you were a fetus, your belly button was more of a belly portal: Your umbilical cord extended from it and connected you to the placenta on your mother’s uterine wall. That way, the placenta could channel nutrients and oxygen to you through the cord, and you could send back waste.

Your umbilical cord was cut when you were born, creating a tiny bulge that left behind some scar tissue after it healed. That scar tissue is your belly button, navel, or umbilicus. Though you may have heard that the shape of your belly button is a direct result of the scissor skills of the doctor who delivered you, that’s not true. Dr. Dan Polk, a neonatologist in the Chicago area, told the Chicago Tribune that a belly button's shape “has to do with how much baby skin leads onto the umbilical cord from the baby’s body. Less skin makes an innie; more skin makes an outie.” About 90 percent of people have innies.

Regardless of how your belly button looks, you probably don’t use it on a daily basis. However, if you’ve studied anatomy, medicine, or a related field, you might recognize it as the central point by which the abdomen is divided into the following quadrants: right upper, left upper, right lower, and left lower. Another way of classifying that area is into nine regions—including the hypochondriac, lumbar, iliac, epigastric, and hypogastric regions—with the umbilical region at the very center.

Abdominopelvic regions diagram
Blausen Medical, Wikimedia Commons // CC BY 3.0

Your belly button can also serve as the opening for laparoscopic surgery, which can save you from having a scar elsewhere on your abdomen.

The navel is a great central landmark outside of medicine, too. If you’ve taken yoga or Pilates classes, you may have heard it referred to as the center of balance or center of gravity. Because it sits right on top of your abdominal muscles, your belly button is an easy marker for your instructor to mention when they want you to access your core, which helps you balance.

And, of course, belly buttons are notorious for storing quite a bit of lint, which always seems to be blue (you can learn more about that here).

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER