The Men Who Volunteered to Be Poisoned by the Government

Harvey Washington Wiley, the brusque and determined leader of the Department of Agriculture's Bureau of Chemistry in Washington, D.C., had good news and bad news for the 12 young men who had answered his call for volunteers. First, Wiley promised them three ample, freshly prepared meals every day for at least six months. Since the majority of the men were Department clerks living on modest wages, this was a tempting offer. The volunteers would also be under exceptional medical care, with weekly physicals and daily recordings of their weight, temperature, and pulse rate.

This was, Wiley explained, because he’d be slowly poisoning them.

Wiley’s staff would put borax in their butter, milk, or coffee. Formaldehyde would lurk in their meats, copper sulfate and saltpeter in their fruit pies. Wiley would begin at low doses and then ratchet up the amount until one or more of the men complained of debilitating symptoms, like vomiting or dizziness. Those people would then be excused from the program until they felt well enough to resume. In the event a subject died or became seriously ill, he would waive the right to pursue legal remedy against the government.

The year was 1902. With funding and consent from Congress, Wiley was about to embark on an experiment he dubbed the “hygienic table trials,” but it was the Washington news media that came up with the nickname that would stick: They called his volunteers "the Poison Squad."

The Poison Squad dining area. Image credit: FDA History Office [PDF] // Public Domain

At the turn of the last century, food manufacturers and distributors were untouched by government oversight. There were no federal requirements for labeling, which meant ingredients didn't need to be listed, and there were no explicit consequences for tampering or adulterating consumer goods. Parents would unwittingly give their babies cough syrup containing morphine to calm them down. Olive oil might actually be cottonseed oil, which was cheaper for makers to source; glucose could be passed off as honey.

A former professor of chemistry at Purdue University, Wiley was aghast at the freewheeling nature of the food industry. He was especially concerned with the use of preservatives, intended to ward off spoilage but poorly understood when consumed in consistent amounts over time. Taking a post as chief chemist at the Department of Agriculture in 1883, Wiley repeatedly petitioned for money and resources to quantify how these substances impacted the human body. Time and again, food lobbyists would thwart his attempts.

In 1902, Congress finally agreed to Wiley’s persistent requests, offering him $5000 to subsidize an experiment on the effects of food additives with a group of men who would spend at least six months, and eventually up to a year, in his service. In the basement of the Bureau’s Washington office, Wiley set up a kitchen, dining room, and lab; he installed a chef, known only as “Perry,” to prepare a variety of welcoming dishes for his volunteers. Roast chicken and braised beef would be served alongside borax and formaldehyde.

Although the ethics of the study could be debated both then and now, Wiley disclosed his intentions to the 12 men who signed up for the program. Mostly young, they were selected for having durable constitutions that might more easily withstand the accumulation of foreign chemicals. Wiley believed if the dosages bothered them, then children and older members of the public were in even more danger.

In exchange for free food and the sense of contributing to the betterment of society, the volunteers agreed to eat their three daily meals only in the test kitchen. No snacking between meals would be permitted, and only water could be ingested away from the table. Their weight, pulse, and temperature would be recorded before sitting down. Wiley also had each man carry a satchel with them at all times to collect urine and feces for laboratory analysis. “Every particle of their secreta,” Wiley said, was necessary to the trial.

The first treat was borax, a ground mineral commonly used to preserve meats and other perishables. Wiley allowed the men a period of 10 to 20 days of eating normally to establish baseline readings of their health and symptoms before Chef Perry began adding a half-gram of the powder to their butter. Although the men knew borax would be served, they didn’t know how—yet most all of them quickly began avoiding the butter out of instinct once they had gotten a taste of it.

Wiley next tried slipping it into their milk, but the same thing happened: They stopped drinking the milk. Having failed to account for the body’s natural resistance to being contaminated with the metallic-tasting substance, he began offering borax-filled capsules with each meal. The men dutifully swallowed them as a kind of dessert following the main course.

Wiley’s squad tolerated the borax—7.5 grains daily—for several weeks. But after a few months, headaches, stomach aches, and depression began to materialize. At six months, they threatened to go on strike unless the slow drip of poison stopped. The summer months seemed to exacerbate their ailments.

By then, Wiley had gotten enough data on borax. He moved on to salicylic acid, sulfuric acid, sodium benzoate, and other additives, administering each one at a time, all across the menu, to assess the response. Sometimes, the progression was so uneventful that the men took it upon themselves to liven up the proceedings. One laced a colleague’s drink with quinine, which can cause headaches and profuse sweating. Not long after, the man went out on a date; he later recounted that when he began to feel the symptoms of the quinine, he "went home prepared to die in the interest of science." (He was fine.)

Other times, the experiments were as dangerous as advertised. Owing to excruciating symptoms, the trial with formaldehyde was terminated early.

A sign posted in the Poison Squad's dining room. Image credit: FDA via Flickr // U.S. Government Works

Rotating members of the Poison Squad convened for roughly five years between 1902 and 1907. All along, lobbyists fought to suppress Wiley’s findings. His 477-page report on the effects of borax was well-received, but supervisors—and even the Secretary of Agriculture—tried to stifle his review of benzoic acid, a widely used preservative, due to its damaging findings and subsequent pestering by food lobbyists. The report was leaked only when the Secretary was away on vacation and a staffer misunderstood his instructions, ordering it printed by mistake.

In 1906, Congress passed both the Pure Food and Drug Act and the Meat Inspection Act, both designed to restrict the kinds of preservatives and additives used by food companies. The former was known as the “Wiley Act,” because Wiley had been the one to demonstrate the need for its inception. They were the first federal laws to regulate food. By the 1930s, Wiley's Bureau of Chemistry had morphed into the Food and Drug Administration—and almost all of the additives Wiley trialed had been excised from the commercial food industry.

Wiley himself remained with the Department of Agriculture until 1912, when he began a 19-year position as a consumer advocate for Good Housekeeping magazine. The public, which had come to know Wiley through the extensive media coverage of the Poison Squad, looked upon him as a reliable source for information.

In 1927, Wiley used his position to notify readers of a toxic substance that was widespread, commonly absorbed, and had underestimated potential to cause cancer. The American public, he warned, should be very wary of tobacco. While Good Housekeeping stopped accepting cigarette ads in 1952, the Surgeon General didn't issue a formal warning until 1964.

Meanwhile, the dozens of men who consented to the regulated poisonings were said to have suffered no lasting effects, save perhaps for one. In 1906, the family of poison squad member Robert Vance Freeman used the press to blame the man’s tuberculosis and subsequent death on the borax he was made to consume. Although Wiley had discharged Freeman in 1903 because his symptoms had rendered him “disabled,” he dismissed any idea the borax was at fault in his death. No charges or lawsuit were ever filed.

Although an experiment involving purposeful and deliberate doses of poison could never be described as "safe," Freeman's fate was an anomaly. Wiley made certain to limit a volunteer's service to one 12-month term, with the chemist correctly observing that “one year of this kind of life is as much as a young man wants.”

Additional Sources: "The Poison Squad and the Advent of Food and Drug Regulation" [PDF]

Sssspectacular: Tree Snakes in Australia Can Actually Jump

sirichai_raksue/iStock via Getty Images
sirichai_raksue/iStock via Getty Images

Ophidiophobia, or fear of snakes, is common among humans. We avoid snakes in the wild, have nightmares about snakes at night, and recoil at snakes on television. We might even be born with the aversion. When researchers showed babies photos of snakes and spiders, their tiny pupils dilated, indicating an arousal response to these ancestral threats.

If you really want to scare a baby, show them footage of an Australian tree snake. Thanks to researchers at Virginia Tech, we now know these non-venomous snakes of the genus Dendrelaphis can become airborne, propelling themselves around treetops like sentient Silly String.

That’s Dendrelaphis pictus, which was caught zipping through the air in 2010. After looking at footage previously filmed by her advisor Jake Socha, Virginia Tech Ph.D. candidate Michelle Graham headed for Australia and built a kind of American Ninja Warrior course for snakes out of PVC piping and tree branches. Graham observed that the snakes tend to spot their landing target, then spring upward. The momentum gets them across gaps that would otherwise not be practical to cross.

Graham next plans to investigate why snakes feel compelled to jump. They might feel a need to escape, or continue moving, or do it because they can. Two scientific papers due in 2020 could provide answers.

Dendrelaphis isn’t the only kind of snake with propulsive capabilities. The Chrysopelea genus includes five species found in Southeast Asia and China, among other places, that can glide through the air.

[h/t National Geographic]

9 Facts About Narcolepsy

Korrawin/iStock via Getty Images
Korrawin/iStock via Getty Images

Everyone experiences occasional daytime sleepiness, but just a small fraction of the population knows what it’s like to have narcolepsy. The disorder is defined by persistent drowsiness throughout the day, and in some cases, sleep paralysis, hallucinations, and the sudden loss of muscle control known as cataplexy. Having narcolepsy can make doing everyday activities difficult or dangerous for patients, but unlike some chronic conditions, it’s also easy to diagnose and treat. Here are some facts you should know about the condition.

1. There are two types of narcolepsy.

If everything you know about narcolepsy comes from movies and TV, you may think of it as the disease that causes people to go limp without warning. Sudden loss of muscle control is called cataplexy, and it’s the defining symptom of type 1 narcolepsy. Type 2 narcolepsy, on the other hand, is mainly characterized by fatigue. Losing motor function while awake isn’t a problem for those with type 2.

2. Type 1 narcolepsy stems from a chemical deficiency.

Almost every patient with type 1 narcolepsy has low levels of hypocretin. Hypocretin is a neurochemical that regulates the wake-sleep cycle. When there isn’t enough of this chemical in the brain, people have trouble staying conscious and alert throughout the day. Most people with the second, less severe type of narcolepsy have normal hypocretin levels, with about a third of them producing low or undetectable amounts. Type 2 narcoplepsy has been studied far less than type 1 of the disorder, and scientists are still figuring out what causes it.

3. The exact causes of narcolepsy aren’t always clear.

So why do some people’s brains produce less hypocretin than others? That part has been hard for scientists to figure out. One possible explanation is that certain autoimmune disorders cause the body to attack the healthy brain cells that make this chemical. This disorder can be the result of genetic and environmental factors. Although people with narcolepsy rarely pass it down to their offspring (this happens less than 1 percent of the time), the sleep condition does occasionally crop up in family clusters, suggesting there is sometimes a genetic component at play. Head trauma that impacts the area of the brain responsible for governing sleep can also lead to narcolepsy in rare cases.

4. There are tests to diagnose narcolepsy.

If patients believe they might have narcolepsy, their doctors might ask them to detail their sleep history and keep a record of their sleep habits. There are also a few tests potential narcoleptics can take to determine if they have the condition. During a polysomnography test, patients spend the night at a medical facility with electrodes attached to their heads to monitor their breathing, eye movement, and brain activity. A multiple sleep latency test is similar, except it gauges how long it takes patients to fall asleep during the day.

5. Strong emotions can trigger cataplexy.

Cataplectic spells can sometimes be predicted by triggers. In some patients, feeling strong emotions—whether they’re crying, laughing, angry, or stressed—is all it takes for them to lose muscle control. These triggers vary from patient to patient, and they can even affect the same person randomly. Some people deal with them by avoiding certain situations and closing themselves off emotionally, which can disrupt their social lives.

6. Narcolepsy can make sleep terrifying.

Narcoleptics don’t just worry about their disorder during their waking hours. When they’re trying to fall asleep at night or wake up in the morning, narcolepsy can complicate things. One symptom is experiencing vivid, dream-like hallucinations while transitioning in or out of consciousness. These visions are often scary and may involve an intruder in the room with the sleeper. If they happen as the patient falls asleep, the hallucinations are called hypnagogic, and if they occur as they wake up, they’re hypnopompic.

A related symptom is sleep paralysis. This happens when a person’s brain cuts off muscle control of their body before they’re fully asleep or as they’re waking up. This combined with hypnagogic or hypnopompic nightmares can cause frightening experiences that are sometimes confused for real encounters.

7. Narcoleptics sometimes do activities half-asleep.

To outside observers, narcolepsy is sometimes hard to spot. A narcoleptic patient overcome by sleepiness won’t necessarily pass out in the middle of what they’re doing. Some act out “automatic behavior,” which means they continue with their actions—whether that’s walking, driving, or typing—with limited consciousness. This can cause poor performance at work or school, and in worst case scenarios, accidents while driving a car or operating machinery.

8. Harriet Tubman may have had narcolepsy.

One of the most famous likely narcoleptics in history is Harriet Tubman. The African American abolitionist was known to suffer from what were probably sudden narcoleptic episodes. The condition may have stemmed from the severe head trauma she sustained when a slave master threw an iron at another slave and hit her instead. The injury left her with permanent brain damage: In addition to narcolepsy, she also experienced chronic seizures and migraines throughout her life.

9. Medications and lifestyle changes are common narcolepsy treatments.

Though there’s no way to cure narcolepsy completely, there are many treatment options available. Taking medication is one of the most common ways to manage the disorder. Stimulants such as modafinil and armodafinil can be used to combat mild sleepiness, while amphetamines are often prescribed for more severe forms of fatigue. For hallucinations and sleep paralysis, selective serotonin reuptake inhibitors and serotonin and norepinephrine reuptake inhibitors—drugs that suppress REM sleep—can help.

As an alternative or supplementary treatment to medications, doctors may recommend lifestyle changes. Sticking to a sleep schedule, exercising regularly, avoiding nicotine and alcohol, and taking naps during the day can all reduce the symptoms of narcolepsy.

SECTIONS

arrow
LIVE SMARTER