CLOSE
Original image

How Did the Duck Hunt Gun Work?

Original image

For many children of the '80s, a good portion of your childhood probably revolved around sitting too close to the TV, clutching a plastic safety cone-colored hand gun and blasting waterfowl out of a pixilated sky in Duck Hunt (also, trying to blow that dog’s head off when he laughed at you). The Duck Hunt gun, officially called the Nintendo Entertainment System (NES) Zapper, seems downright primitive next to the Nintendo’s Wii and Microsoft’s Kinect, but in the late 80s, it filled plenty of young heads with wonder. How did that thing work?

Annie get your Zapper

The Zapper’s ancestry goes back to the mid 1930s, when the first so-called “light guns” appeared after the development of light-sensing vacuum tubes. In the first light gun game, Ray-O-Lite (developed in 1936 by Seeburg, a company that made parts and systems for jukeboxes), players shot at small moving targets mounted with light sensors using a gun that emitted a beam of light. When the beam struck a sensor, the targets – ducks, coincidentally – registered the “hit” and a point was scored.

Light guns hit home video game consoles with Shooting Gallery on the Magnavox Odyssey in 1972. Because the included shotgun-style light gun was only usable on a Magnavox television, the game flopped. The Nintendo Entertainment System (NES) Zapper then fell into the hands of American kids in October 1985, when it was released in a bundle with the NES, a controller and a few games. Early versions of the peripheral were dark gray, but the color of the sci-fi ray gun-inspired Zapper was changed a few years later when a federal regulation required that toy and imitation firearms be “blaze orange” (color #12199, to be exact) so they wouldn’t be mistaken for the real deal.

While there were a number of Zapper-compatible games released for the NES (when I was a kid and my dad worked from home, we wasted plenty of afternoons away playing Hogan’s Alley), most lived in the shadow of the iconic Duck Hunt, the most recognizable and popular Zapper game.

Gone in a Flash

While older light guns like the Ray-O-Lite rifle emitted beams of light, the Zapper and many other recent light guns work by receiving light through a photodiode on or in the barrel and using that light to figure out where on the TV screen you're aiming.

When you point at a duck and pull the trigger, the computer in the NES blacks out the screen and the Zapper diode begins reception. Then, the computer flashes a solid white block around the targets you’re supposed to be shooting at. The photodiode in the Zapper detects the change in light intensity and tells the computer that it’s pointed at a lit target block — in others words, you should get a point because you hit a target. In the event of multiple targets, a white block is drawn around each potential target one at a time. The diode’s reception of light combined with the sequence of the drawing of the targets lets the computer know that you hit a target and which one it was. Of course, when you’re playing the game, you don’t notice the blackout and the targets flashing because it all happens in a fraction of a second.

This target flashing method helped Nintendo overcome a weakness of older light gun games: cheaters racking up high scores by pointing the gun at a steady light source, like a lamp, and hitting the first target right out of the gate.

If you’re hungry for a more technical depth, check out Nintendo's 1989 patent on the Zapper technology

Original image
iStock
arrow
Big Questions
Where Is the Hottest Place on Earth?
Original image
iStock

The summer of 2017 will go down as an endurance test of sorts for the people of Phoenix, Arizona. The National Weather Service issued an extreme heat warning, and planes were grounded as a result of temperatures exceeding 120 degrees. (Heat affects air density, which in turn affects a plane’s lift.)

Despite those dire measures, Phoenix is not the hottest place on Earth. And it’s not even close.

That dubious honor was bestowed on the Lut Desert in Iran in 2005, when land temperatures were recorded at a staggering 159.3 degrees Fahrenheit. The remote area was off the grid—literally—for many years until satellites began to measure temperatures in areas that were either not well trafficked on foot or not measured with the proper instruments. Lut also measured record temperatures in 2004, 2006, 2007, and 2009.

Before satellites registered Lut as a contender, one of the hottest areas on Earth was thought to be El Azizia, Libya, where a 1922 measurement of 136 degrees stood as a record for decades. (Winds blowing from the nearby Sahara Desert contributed to the oppressive heat.)

While the World Meteorological Organization (WMO) acknowledged this reading as the hottest on record for years, they later declared that instrumentation problems and other concerns led to new doubts about the accuracy.

Naturally, declaring the hottest place on Earth might be about more than just a single isolated reading. If it’s consistency we’re after, then the appropriately-named Death Valley in California, where temperatures are consistently 90 degrees or above for roughly half the year and at least 100 degrees for 140 days annually, has to be a contender. A blistering temperature of 134 degrees was recorded there in 1913.

Both Death Valley and Libya were measured using air temperature readings, while Lut was taken from a land reading, making all three pretty valid contenders. These are not urban areas, and paving the hottest place on Earth with sidewalks would be a very, very bad idea. Temperatures as low as 95 degrees can cause blacktop and pavement to reach skin-scorching temperatures of 141 degrees.

There are always additional factors to consider beyond a temperature number, however. In 2015, Bandar Mahshahr in Iran recorded temperatures of 115 degrees but a heat index—what it feels like outside when accounting for significant humidity—of an astounding 163 degrees. That thought might be one of the few things able to cool Phoenix residents off.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

Original image
iStock
arrow
Big Questions
How Does Autopilot Work on an Airplane?
Original image
iStock

How does autopilot work on an airplane?

Joe Shelton:

David Micklewhyte’s answer is a good one. There are essentially a few types of features that different autopilots have. Some autopilots only have some of these features, while the more powerful autopilots do it all.

  • Heading Hold: There’s a small indicator that the pilot can set on the desired heading and the airplane will fly that heading. This feature doesn’t take the need for wind correction to desired routing into account; that’s left to the pilot.
  • Heading and Navigation: In addition to holding a heading, this version will take an electronic navigation input (e.g. GPS or VOR) and will follow (fly) that navigation reference. It’s sort of like an automated car in that it follows the navigator’s input and the pilot monitors.
  • Altitude Hold: Again, in addition to the above, a desired altitude can be set and the aircraft will fly at that altitude. Some autopilots have the capability for the pilot to select a desired altitude and a climb or descent rate and the aircraft will automatically climb or descend to that altitude and then hold the altitude.
  • Instrument Approaches: Autopilots with this capability will fly preprogrammed instrument approaches to the point where the pilot either takes control and lands or has the autopilot execute a missed approach.

The autopilot is a powerful computer that takes input from either the pilot or a navigation device and essentially does what it is told to do. GPS navigators, for example, can have a full flight plan entered from departure to destination, and the autopilot will follow the navigator’s guidance.

These are the majority of the controls on the autopilot installed in my airplane:

HDG Knob = Heading knob (Used to set the desired heading)

AP = Autopilot (Pressing this turns the autopilot on)

FD = Flight Director (A form of navigational display that the pilot uses)

HDG = Heading (Tells the autopilot to fly the heading set by the Heading Knob)

NAV = Tells the autopilot to follow the input from the selected navigator

APR = Tells the autopilot to fly the chosen approach

ALT = Tells the autopilot to manage the altitude, controlled by the following:

VS = Vertical Speed (Tells the autopilot to climb or descend at the chosen rate)

Nose UP / Nose DN = Sets the climb/descent rate in feet per minute

FLC = Flight Level Change (An easy manual way to set the autopilot)

ALT Knob = Used to enter the desired altitude

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios