Scientists Built a LEGO 'Electrospinner' to Improve the Texture of Lab-Grown Meat

iStock.com/Ekaterina79
iStock.com/Ekaterina79

A group of food scientists who are working to create lab-grown meat have found inspiration in an unlikely source: LEGOs. According to Food & Wine, researchers from Pennsylvania State University and the University of Alabama used LEGO components to create a device capable of improving the texture of the meat they were cultivating. Their findings were recently published in the journal Food Hydrocolloids.

Any protein that comes from “stem or stem-like animal cells” that are cultured in a lab can be considered lab-grown meat, according to Penn State. While lab-grown meat can be labeled a meat substitute because it requires far fewer animals for its production, it remains to be seen whether vegans and vegetarians will be willing to eat it.

Lab-grown meat is still very much in the development stages, and scientists are working on ways to improve the texture. Because cultured muscle cells don’t have any particular structure when they grow, the meat generally comes out resembling ground beef. That’s fine if you’re hoping to make more humane tacos, but it presents a challenge when trying to create, say, a lab-grown steak.

This is where the toy bricks came in. Researchers used LEGO Power Functions to create an electrospinning device that was capable of turning starch fibers into a structured meat “scaffold.” The plastic pieces were ideal because they weren’t conductive, which was crucial because the researchers were working with water and ethanol.

Unlike scaffolds that produce plastic fibers for biomedical purposes, the LEGO device was capable of spinning corn-derived fibers. In other words, what's going into the meat is entirely edible. “The idea is we could make a nice, edible, clean scaffold for our clean meat,” Gregory Ziegler, a Penn State professor and director of graduate studies at the university's Department of Food Science, told Food & Wine.

Scientists are now looking for ways to improve their equipment in order to churn out larger amounts of starch scaffolds.

[h/t Food & Wine]

Pandemic vs. Epidemic: What’s the Difference?

If scientists can't develop a vaccine for a new virus quickly enough, an epidemic can turn into a pandemic.
If scientists can't develop a vaccine for a new virus quickly enough, an epidemic can turn into a pandemic.
doble-d/iStock via Getty Images

As the new coronavirus continues to spread around the world, the words epidemic and pandemic are showing up in news reports more often than they usually do. While the terms are closely related, they don’t refer to the same thing.

As the Association for Professionals in Infection Control and Epidemiology (APIC) explains on its website, “an epidemic occurs when an infectious disease spreads rapidly to many people.” Usually, what precedes an epidemic is an outbreak, or “a sudden rise in the number of cases of a disease.” An outbreak can affect a single community or several countries, but it’s on a much smaller scale than an epidemic.

If an epidemic can’t be contained and keeps expanding its reach, public health officials might start calling it a pandemic, which means it’s affected enough people in different areas of the world to be considered a global outbreak. In short, a pandemic is a worldwide epidemic. It infects more people, causes more deaths, and can also have widespread social and economic repercussions. The spread of the Spanish influenza from 1918 to 1919, which killed between 20 and 40 million people around the world, was a pandemic; more recently, the H1N1 influenza created a pandemic in 2009.

Here’s where it gets a little tricky: There’s no cut-and-dried classification system for outbreaks, epidemics, and pandemics. Based on the definitions above, it might seem like the current coronavirus disease, now called COVID-19, falls into the pandemic category already—according to a map from the World Health Organization (WHO), there are more than 80,000 confirmed cases in 34 countries, and nearly 2700 people have died from the disease. It’s also beginning to impact travel, stock markets, and the global economy as a whole. But WHO maintains that although the situation has the potential to become a pandemic, it’s still an epidemic for now.

“It really is borderline semantics, to be honest with you,” Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, told CNN earlier this month. “I think you could have people arguing each end of it. Pandemics mean different things to different people.”

[h/t APIC.org]

Fat Bats Might Be Resistant to Deadly White-Nose Syndrome

Penn State, Flickr // CC BY-NC-ND 2.0
Penn State, Flickr // CC BY-NC-ND 2.0

Good news for flying mammals: chubby little brown bats might be genetically resistant to white-nose syndrome, a fungal disease that’s killed more than 5.5 million bats since it was first documented in 2006 [PDF]. A new study in the journal Scientific Reports describes three genetic adaptations in the bats that could protect them from the pathogen.

Little brown bats (Myotis lucifugus), common in Canada and the eastern United States, are especially susceptible to white-nose syndrome. According to lead author Giorgia G. Auteri, a doctoral candidate at the University of Michigan, white-nose syndrome kills bats by disrupting their hibernation cycles.

“When they’re in hibernation in the winter, they’re not meant to be waking up. They’re supposed to be asleep,” Auteri tells Mental Floss. “But this fungus grows on them, and it causes the bats to keep waking up during hibernation. And because they’re waking up when they shouldn’t be, they’re running out of fat reserves too early.”

But while white-nose syndrome has devastated bat populations in North America, not all infected bats die from the disease—some recover. Auteri wanted to find out what made the survivors so special.

Auteri and her team compared the genetic makeup of nine surviving and 29 non-surviving little brown bats from northern Michigan. They discovered that survivors share three important genetic distinctions. “One is involved with fat metabolism,” she says. “And another is involved with regulating when the bats wake up from hibernation. And the third gene is involved in their echolocation ability, in their sonar for hunting insects.”

The results make sense, Auteri says. Because white-nose syndrome interrupts bats’ hibernation schedules, bats with genes that relate to more optimal fat storage (i.e., they’re fatter) and better hibernation regulation (i.e., they sleep longer) are more likely to survive the disease.

Auteri’s research could help scientists and conservationists find ways to preserve little brown bat populations. Besides being adorable, little brown bats also play an important ecological role as predators of insects like mosquitoes, moths, and other pests that are destructive to crops and forests.

SECTIONS

arrow
LIVE SMARTER