What Is Trypophobia? And Is It Real?

iStock
iStock

When I look at the above photo of a harmless lotus seed head, the skin on my neck crawls, my heart flutters, my shoulders tighten, and I shiver, breaking out in goosebumps. It makes me want to curl up in a ball under my desk and quietly weep. 

What provokes this intense visceral reaction? Holes. Specifically, clusters of holes. Take a look at this utterly innocent picture of milk boiling in a pot, which made me yelp and nearly leap out of my chair:

Image Credit: CWM93 via Imgur

Am I crazy? Maybe, but not because I have a strong revulsion to clusters of holes and sometimes bumps. Instead, I have what is colloquially known as trypophobia. This isn't an officially recognized phobia; you won't find it in the Diagnostic and Statistical Manual of Mental Disorders. But you will find it all over the Internet, and as we all know, if it's on the Internet, it must be true.

The term trypophobia is rumored to have been coined in 2005 by an anonymous Irish woman in a Web forum who clearly tapped into a zeitgeist of GAH! The term's use online really took off around 2009, especially in the Philippines. Today you can find countless examples of people sharing photos of holes that deeply rattle them. While many, like the lotus seed pod and boiling milk, are au naturel shots of real, mostly innocuous objects, others are poorly photoshopped yet nevertheless appalling pictures of cluster holes superimposed mostly on human bodies—especially faces. (Click here at your peril.)

Many images of holes, singular or clustered, trigger people for understandable reasons: They depict severe injuries that require treatments like skin grafts; the flesh-violating impact of parasites like bot flies and worms; or the frightening ravages of disease. (Then there is the frankly horrifying, pregnant suriname toad, whose entire back is pockmarked with holes filled by babies, which at birth punch through her skin and leap from her back as toadlets. Thanks, evolution.)

It makes sense to have a healthy fear of things that can endanger us. But why fall to pieces over pancake batter?

Or cry about cantaloupe?

Or get creeped out by coral?

The little research done into trypophobia suggests it's an instinctual fear of harm from legitimately dangerous things that's been transferred to harmless objects. As they reported in the journal Psychological Science, Geoff Cole and Allen Wilkins, two researchers at the Centre for Brain Science at the University of Essex, performed a spectral analysis on 76 images that induce trypophobia (pulled from trypophobia.com), and compared them to 76 control images of holes that didn't trigger a revulsed response. They found that the triggering images shared a typical spectral composition: high-contrast colors in a particular spatial distribution.

They say plenty of dangerous animals share this look. "We argue that although sufferers are not conscious of the association, the phobia arises in part because the inducing stimuli share basic visual characteristics with dangerous organisms," they wrote. Consider the blue-ringed octopus, which is deadly venomous:

iStock

In the same study, the researchers showed a picture of a lotus seed head (ugh) to 91 men and 195 women aged 18 to 55 years; 11 percent of the men and 18 percent of women described the seed head as “uncomfortable or even repulsive to look at.” 

Others are doubtful that trypophobia is anything more than a combination of anxiety, priming, and conditioning, as psychiatrist and anxiety disorder specialist Carol Mathews explained to NPR. But more recent research by the Essex scientists, in which they developed and tested a trypophobia questionnaire, suggests that trypophobic reactions are not correlated with anxiety.

Not all images that give people the trypophobic heebie jeebies are organic. Soap bubbles are a common trigger, as are holes in rocks. Here is some aluminum metal foam to fuel your nightmares. Enjoy!

Image Credit: Metalfoam, Wikimedia Commons // CC BY-SA 3.0

Science Finds a Better Way to Calculate 'Dog Years'

thegoodphoto/iStock via Getty Images
thegoodphoto/iStock via Getty Images

Anyone who has ever owned a pet is likely familiar with the concept of “dog years,” which suggests that one year for a dog is like seven years for a human. Using this conversion metric, a 2-year-old dog is akin to a high school freshman, while a 10-year-old dog is ready for an assisted living facility.

If that seems rather arbitrary, that’s because it is. But now, researchers at the University of California, San Diego have come to a more data-based measurement on dog aging through DNA.

The paper, published on the preprint server bioRxiv, based the finding on DNA methylation, a process in which molecules called methyl groups attach themselves to DNA and serve as an indicator of aging. Generally speaking, the older living beings get, the faster the rate of methylation. In the study, 104 Labrador retrievers were examined, with subjects ranging from 1 month to 16 years old. The results of their DNA methylation were compared to human profiles. While the rate of methylation tracked closely between the two—young and old dogs had similar rates to young and old people—adolescent and mature dogs experienced more accelerated aging.

Their recommended formula for comparing dog and human aging? Multiply the natural logarithm of a dog’s age by 16, then add 31. Or, just use this calculator. Users will see that a 2-year-old dog, for example, wouldn’t be the canine equivalent of a 14-year-old. It would be equivalent to 42 human years old and should probably start putting money into a 401(k). But because methylation slows considerably in mid-life, a 5-year-old dog is approximately a 57-year-old human, while a 6-year-old dog is nearing 60 in human years—a minor difference. Things level out as the dog gets much older, with a 10-year-old dog nearing a 70-year-old human.

Different breeds age at different rates, so the formula might not necessarily apply to other dog breeds—only Labs were studied. The work is awaiting peer review, but it does offer a promising glimpse into how our furry companions grow older.

[h/t Live Science]

Sssspectacular: Tree Snakes in Australia Can Actually Jump

sirichai_raksue/iStock via Getty Images
sirichai_raksue/iStock via Getty Images

Ophidiophobia, or fear of snakes, is common among humans. We avoid snakes in the wild, have nightmares about snakes at night, and recoil at snakes on television. We might even be born with the aversion. When researchers showed babies photos of snakes and spiders, their tiny pupils dilated, indicating an arousal response to these ancestral threats.

If you really want to scare a baby, show them footage of an Australian tree snake. Thanks to researchers at Virginia Tech, we now know these non-venomous snakes of the genus Dendrelaphis can become airborne, propelling themselves around treetops like sentient Silly String.

That’s Dendrelaphis pictus, which was caught zipping through the air in 2010. After looking at footage previously filmed by her advisor Jake Socha, Virginia Tech Ph.D. candidate Michelle Graham headed for Australia and built a kind of American Ninja Warrior course for snakes out of PVC piping and tree branches. Graham observed that the snakes tend to spot their landing target, then spring upward. The momentum gets them across gaps that would otherwise not be practical to cross.

Graham next plans to investigate why snakes feel compelled to jump. They might feel a need to escape, or continue moving, or do it because they can. Two scientific papers due in 2020 could provide answers.

Dendrelaphis isn’t the only kind of snake with propulsive capabilities. The Chrysopelea genus includes five species found in Southeast Asia and China, among other places, that can glide through the air.

[h/t National Geographic]

SECTIONS

arrow
LIVE SMARTER