15 Things We’ve Learned About the Universe From the Hubble Space Telescope

Launched nearly 30 years ago, the Hubble Space Telescope is a veritable manufacturing plant of discoveries, solving mysteries of the universe and raising tantalizing new possibilities about where we’ve come from and where we are going. Here are 15 things we’ve learned from the Hubble Space Telescope.

1. The universe is 14 billion years old.  

Galaxies are moving apart, which means at some point they must have been close together. One method to figure out the age of the universe involved using the Hubble Space Telescope to determine speed, distance, and acceleration. Scientists could then work out the time necessary for current galactic distances to be reached. Now we know that the universe's birthday cake requires 14 billion candles.

2. Quasars reside in the cores of galaxies.

Quasars are extraordinarily weird. They're the size of our solar system but as bright as entire galaxies that are populated with billions and billions of stars. Scientists used the Hubble Space Telescope to track down the home of these celestial high beams and found them in galactic cores.

3. We can see the universe's baby photos. 

There's no "now" in space. Space is big, and light takes a very long time to reach our little corner of the universe. When the Hubble Space Telescope peered deeply into space to photograph distant galaxies, scientists were astonished by the number it captured: 3000. But none of the 3000 galaxies pictured in the "Hubble Deep Field" were recent. Hubble had photographed galaxies from billions of years in the past—that's how long it took the light to reach us. In other words, the Hubble Deep Field is comprised of galactic baby pictures from the dawn of time. 

4. We thought the expansion of the universe was slowing down. We were wrong. 

It just makes sense that after the literal eternity which has elapsed since the Big Bang, the expansion of the universe would slow. The Hubble Space Telescope has news for us, though: The expansion of the universe is actually increasing in speed. Why? Dark energy. While we're not even sure what dark energy is, the working theory is that it's responsible for the acceleration.  

5. PLUTO HAS MORE MOONS THAN WE ANTICIPATED. 

In 2005, scientists discovered two new moons of Pluto using the Hubble Space Telescope. After the New Horizons spacecraft to Pluto launched in January 2006, the possibility of undiscovered moons became a big worry. Unlike planets, small moons can lack the gravity to hold on to their collision debris. A rock hitting a tiny moon might send many more rocks back into space. Because debris the size of a grain of rice could have destroyed New Horizons, the team went to work discovering as many moons as it could. In the end, Hubble discovered four moons around Pluto, bringing its total number to five. New Horizons scientists modeled the newly discovered moons, and were able to avoid disaster.                                                          

6. We've seen the same moment of time on more than one occasion.

To those of us without advanced degrees in the subject, physics can seem really weird. There might be nothing weirder, then, than the Groundhog Day supernova. Nine billion years ago, a star blew up. Gravity from intermediary galaxies have bent and influenced light rays from this doomed star in such a way that the light takes different paths to arrive here, some longer than others. This means we've seen the exact same moment in time more than once. So far, scientists have observed the same supernova four times and counting

7. Supermassive black holes are real.

Wikimedia Commons // CC BY-SA 2.5

Einstein predicted black holes with his general theory of relativity, though actually finding them has been something of a problem for scientists. In 1971, Cygnus X-1 was all but confirmed as a black hole, ending years of debate. But around the same time, a new hypothesis was emerging about supermassive black holes that resided at the centers of galaxies. Enter the Hubble Space Telescope, which found in galaxy M87 "conclusive evidence" of the existence of supermassive black holes. It is one of the most astonishing discoveries in the telescope's three decades. In 2019, an international team of scientists took the first-ever photo of a black hole, and it was the supermassive one at the center of the M87 galaxy.

8. We know the colors of exoplanets. 

Exoplanets are planets that orbit distant stars. Many have been discovered, and the Hubble Space Telescope has been instrumental in fleshing out what we know about these mysterious worlds. Hubble instruments have performed atmospheric studies of such planets similar to GJ 1132b, a Venus-like world 230 trillion miles away that was discovered in 2015. Hubble has also helped scientists figure out the actual color of an exoplanet—a first. The creatively named HD 189733b is now known to be cobalt blue. (Its color comes not from oceans but from its silicate atmosphere.) Hubble didn't stop there, though. It has also helped scientists create the first exoplanet weather map. The forecast for WASP-43b: hot—3000°F—with occasional temperatures reaching a “cool” 1000°F.

9. Jupiter's moon Ganymede has an ocean.

Ganymede made quite a splash earlier this year when a subsurface ocean was discovered. But how was that determined, anyway? Scientists used the Hubble Space Telescope to watch auroras on Ganymede. When the auroras didn't behave as expected, scientists knew they had something special. In a statement reported by Space.com, geophysicist Joachim Saur said:

"I was always brainstorming how we could use a telescope in other ways. … Is there a way you could use a telescope to look inside a planetary body? Then I thought, the aurorae! Because aurorae are controlled by the magnetic field, if you observe the aurorae in an appropriate way, you learn something about the magnetic field. If you know the magnetic field, then you know something about the moon's interior."

In this case, that interior was an ocean. 

10. Europa has plumes, and that might indicate signs of life. 

When a world has a subsurface ocean, the great challenge is trying to figure out how to drill down into it and take samples. Plumes make the job much easier. In essence, plumes are giant geysers firing the ocean into space. So instead of spacecraft somehow going into the ocean, plumes help the ocean come to the spacecraft. This is especially important for a world like Europa, which is thought by many to harbor life. In 2013, Hubble scientists discovered plumes on Europa, one of Jupiter's moons. Now that NASA has built a flagship mission around Europa, scientists might soon have a chance at sampling it for life. 

11. There are new worlds that we can actually visit. 

The first phase of New Horizons has been successful beyond the dreams of even Alan Stern, the mission's leader. Moreover, the spacecraft still has a lot of power. It is presently flying through the mysterious Kuiper Belt—a ring composed primarily of frozen volatiles beyond Neptune—where there is much to learn. The New Horizons team has used Hubble to find new targets for a spacecraft study: in January 2019, the spacecraft beamed back images of a Kuiper Belt object (KBO) dubbed Ultima Thule in the farthest fly-by of a KBO ever achieved. The snowman-shaped object is 4 billion miles from the Sun.

12. There was a 10th planet in our solar system. 

Hubble is good for more than studying exoplanets, moons, and baby galaxies. Scientists have used the space telescope to study strange new planets in our own solar system. Before the International Astronomical Union meddled with the definition of "planet," a 10th planet in the solar system—Eris—was discovered. The secrets of Eris, a Kuiper Belt Object that is now categorized as the second-largest dwarf planet (behind Pluto, which was demoted to dwarf planet status in 2006), were unlocked by Hubble, including its size and mass.                            

13. Dark matter can appear in clumps.

Thanks to Hubble, scientists have been able to map dark matter in the universe, and have worked out that normal matter (things made of atoms—in this case, galaxies) gathers near dense areas of dark matter. In addition, Hubble's findings suggest that dark matter clumps together as it collapses under gravity. NASA compares Hubble's success in mapping dark matter to "mapping a city from nighttime aerial snapshots showing only streetlights. … These new map images are equivalent to seeing a city, its suburbs and country roads in daylight for the first time." 

14. It's a galaxy-eat-galaxy universe out there.

When scientists used Hubble to study the Andromeda galaxy, they expected to find very old stars. They were surprised, then, to learn that the stars ranged in age from 6 to 13 billion years old. They suspect that the young stars found their way into Andromeda through cosmic collisions. In other words, Andromeda ate smaller galaxies and kept the stars for itself. 

15. PROTOPLANETARY DISKS ARE OBSERVABLE.

For a long time, scientists believed that "protoplanetary disks"—disks of dust around stars that might form solar systems—would be impossible to see. It was thought that the disks would be obscured by clouds of gas. Hubble proved that suspicion wrong, and has discovered many such disks. As a result, scientists have new insights into how planets and their associated solar systems are created. 

What is Mercury in Retrograde, and Why Do We Blame Things On It?

NASA
NASA

Crashed computers, missed flights, tensions in your workplace—a person who subscribes to astrology would tell you to expect all this chaos and more when Mercury starts retrograding. For the remainder of 2019, that means October 31-November 20. But according to an astronomer, this common celestial phenomenon is no reason to stay cooped up at home for weeks at a time.

"We don't know of any physical mechanism that would cause things like power outages or personality changes in people," Dr. Mark Hammergren, an astronomer at Chicago's Adler Planetarium, tells Mental Floss. So if Mercury doesn’t throw business dealings and relationships out of whack when it appears to change direction in the sky, why are so many people convinced that it does?

The History of "Mercury in Retrograde"

Mercury retrograde—as it's technically called—was being written about in astrology circles as far back as the mid-18th century. The event was noted in British agricultural almanacs of the time, which farmers would read to sync their planting schedules to the patterns of the stars. During the spiritualism craze of the Victorian era, interest in astrology boomed, with many believing that the stars affected the Earth in a variety of (often inconvenient) ways. Late 19th-century publications like The Astrologer’s Magazine and The Science of the Stars connected Mercury retrograde with heavy rainfall. Characterizations of the happening as an "ill omen" also appeared in a handful of articles during that period, but its association with outright disaster wasn’t as prevalent then as it is today.

While other spiritualist hobbies like séances and crystal gazing gradually faded, astrology grew even more popular. By the 1970s, horoscopes were a newspaper mainstay and Mercury retrograde was a recurring player. Because the Roman god Mercury was said to govern travel, commerce, financial wealth, and communication, in astrological circles, Mercury the planet became linked to those matters as well.

"Don’t start anything when Mercury is retrograde," an April 1979 issue of The Baltimore Sun instructed its readers. "A large communications organization notes that magnetic storms, disrupting messages, are prolonged when Mercury appears to be going backwards. Mercury, of course, is the planet associated with communication." The power attributed to the event has become so overblown that today it's blamed for everything from digestive problems to broken washing machines.

What is Mercury in Retrograde?

Though hysteria around Mercury retrograde is stronger than ever, there's still zero evidence that it's something we should worry about. Even the flimsiest explanations, like the idea that the gravitational pull from Mercury influences the water in our bodies in the same way that the moon controls the tides, are easily deflated by science. "A car 20 feet away from you will exert a stronger pull of gravity than the planet Mercury does," Dr. Hammergren says.

To understand how little Mercury retrograde impacts life on Earth, it helps to learn the physical process behind the phenomenon. When the planet nearest to the sun is retrograde, it appears to move "backwards" (east to west rather than west to east) across the sky. This apparent reversal in Mercury's orbit is actually just an illusion to the people viewing it from Earth. Picture Mercury and Earth circling the sun like cars on a racetrack. A year on Mercury is shorter than a year on Earth (88 Earth days compared to 365), which means Mercury experiences four years in the time it takes us to finish one solar loop.

When the planets are next to one another on the same side of the sun, Mercury looks like it's moving east to those of us on Earth. But when Mercury overtakes Earth and continues its orbit, its straight trajectory seems to change course. According to Dr. Hammergren, it's just a trick of perspective. "Same thing if you were passing a car on a highway, maybe going a little bit faster than they are," he says. "They're not really going backwards, they just appear to be going backwards relative to your motion."

Embedded from GIFY

Earth's orbit isn't identical to that of any other planet in the solar system, which means that all the planets appear to move backwards at varying points in time. Planets farther from the sun than Earth have even more noticeable retrograde patterns because they're visible at night. But thanks to astrology, it's Mercury's retrograde motion that incites dread every few months.

Dr. Hammergren blames the superstition attached to Mercury, and astrology as a whole, on confirmation bias: "[Believers] will say, 'Aha! See, there's a shake-up in my workplace because Mercury's retrograde.'" He urges people to review the past year and see if the periods of their lives when Mercury was retrograde were especially catastrophic. They'll likely find that misinterpreted messages and technical problems are fairly common throughout the year. But as Dr. Hammergren says, when things go wrong and Mercury isn't retrograde, "we don't get that hashtag. It's called Monday."

This piece originally ran in 2018.

How to Catch the Transits of Mercury and the 'Demon Star' This Month

Allexxandar/iStock via Getty Images
Allexxandar/iStock via Getty Images

This month's sky-gazing event calendar is all about transits. In astronomy, a transit occurs when one celestial body appears to pass directly in front of another in the night sky, causing the light from one body to diminish in some cases. As Geek reports, there are two main transits to look out for in November: that of Mercury moving across the sun and the dimming and brightening of the "demon star" Algol.

What is a Mercury transit?

Mercury is currently in retrograde (though you shouldn't blame that for any chaos in your personal life). As the innermost planet travels "backwards" across the sky this month, it will make a rare detour past the face of the sun on November 11. Mercury's transit across the sun is something that only happens roughly 13 times every 100 years. Such an event won't be seen again in the U.S. until 2049.

This time around, it will take Mercury about five and a half hours—starting just after sunrise on the East Coast—to make the full journey from one end of the bright yellow disc to the other.

What is a "demon star" transit?

The transit of Algol, also known as the demon star, is a much more common event, but it's no less spectacular. Algol is really two stars in the constellation Perseus that are constantly orbiting each other. Every 2.86736 days, the smaller star of the pair passes in front of the larger star, making it appear slightly dimmer for 10 hours at a time. In the first half of the month, most of these transits occur after sunset on the East Coast, which is the best time to observe the transition. The next is set for November 9 at 3:17 a.m. EST, with the one after that taking place on November 12, six minutes after midnight.

Algol gets its monstrous nickname from a classic villain of Greek mythology. The star is supposed to resemble the winking, snake-haired head of the gorgon Medusa, who was slain by Perseus. Algol is a name derived from an Arabic word meaning "the demon's head."

How to see Mercury's and Algol's transits

To see both of these events, you'll need some special equipment. Looking directly at the sun is never a good idea, and NASA recommends using a telescope with a certified sun filter to watch Mercury's transit safely on November 11. A solar projection box or sun funnel would also allow you to observe the planet's passage without damaging your eyes.

There's no harm in looking straight at the twin stars that make up Algol, but you'll have trouble seeing them "blink" with your naked eye. For that event, a regular telescope or binoculars would do.

[h/t Geek]

SECTIONS

arrow
LIVE SMARTER