iStock
iStock

Why Don't Woodpeckers Get Brain Damage?

iStock
iStock

Hit your head really hard on something, and it’ll smart for a while. In worse cases, you might get a concussion, fracture your skull, or receive a brain injury that leaves you impaired or kills you (traumatic brain injuries account for nearly one third of injury-related deaths in the US).

Good thing you’re not a woodpecker, then. The lives and livelihoods of these birds revolve around slamming their heads into things. Whether it wants to get at an insect hiding in bark, excavate a space to build a nest, claim a bit of territory, or attract a mate, the woodpecker has one simple solution: bang its head against a tree trunk at speeds reaching 13 to 15 miles per hour. In an average day, a woodpecker does this around 12,000 times, and yet they don’t seem to hurt themselves or be the least bit bothered by it. This is because, after millions of years of this type of behavior, they’ve evolved some specialized headgear to prevent injuries to their heads, brains, and eyes.

To figure out what goes into woodpecker head trauma prevention, a team of Chinese scientists took a look at the birds’ skulls and brains and their pecking behavior. They watched as woodpeckers pecked at force sensors while recording them with high-speed cameras so they could see the strikes in slow motion and know how hard each blow was. They also scanned the birds’ heads with x-rays and an electron microscope to get a better look at their bone structure. Finally, they squished a few preserved woodpecker skulls in a material testing machine and, using their scans, built 3D computer models of the birds’ heads to smash in a simulation.

When all was said and done and both the virtual and actual woodpeckers' heads had taken a sound beating, the researchers found that there are a few anatomical features and other factors that come together to keep a woodpecker safe and healthy while it rat-a-tat-tats the day away.

First, a woodpecker’s skull is built to absorb shock and minimize damage. The bone that surrounds the brain is thick and spongy, and loaded with trabeculae, microscopic beam-like bits of bone that form a tightly woven “mesh” for support and protection. On their scans, the scientists found that this spongy bone is unevenly distributed in woodpeckers, and it is concentrated around the forehead and the back of the skull, where it could act as a shock absorber.

Woodpeckers' hyoid bones act as additional support structures. In humans, the horseshoe-shaped hyoid is an attachment site for certain throat and tongue muscles. Woodpeckers’ hyoids do the same job, but they’re much larger and are differently shaped. The ends of the “horseshoe” wrap all the way around the skull and, in some species, even around the eye socket or into the nasal cavity, eventually meeting to form a sort of sling shape. This bizarre-looking bone, the researchers think, acts like a safety harness for the woodpecker’s skull, absorbing shock stress and keeping it from shaking, rattling and rolling with each peck.

Inside the skull, the brain has its own defenses. It’s small and smooth, and is positioned in a tight space with its largest surface pointing towards the front of the skull. It doesn’t move around too much, and when it does collide with the skull, the force is spread out over a larger area. This makes it more resistant to concussions, the researchers say.

A woodpecker’s beak helps prevent trauma, too. The outer tissue layer of its upper beak is longer than the lower beak, creating a kind of overbite, and the bone structure of the lower beak is longer and stronger than the upper one. The researchers think that the uneven build diverts impact stress away from the brain and distributes it to the lower beak and bottom parts of the skull instead.

The woodpecker’s anatomy doesn’t just prevent injuries to the brain, but also its eyes. Other research using high-speed recordings has shown that, in the fraction of a second just before their beaks strike wood, woodpeckers’ thick nictitans—membranes beneath the lower lid of their eyes, sometimes called the “third eyelid”—close over the eyes. This protects them from debris and keeps them in place. They act like seatbelts, says ophthalmologist Ivan Schwab, author of Evolution's Witness: How Eyes Evolved, and they keep the retina from tearing and the eye from popping right out of the skull.

There’s also a behavioral aspect to the damage control. The researchers found that woodpeckers are pretty good at varying the paths of their pecks. By moving their heads and beaks around as they hammer away, they minimize the number of times in a row that the brain and skull make contact at the same point. Older research also showed that the strike trajectories, as much as they vary, are always almost linear. There’s very little, if any, rotation of the head and almost no movement immediately after impact, minimizing twisting force that could cause injury.

Earlier this year, another group of researchers in China found that, with all of these adaptations, 99.7 percent of the impact energy from striking a tree is absorbed by the body, but a little bit—that last 0.3 percent—does go to the head and the brain. That mechanical energy gets converted into heat, which causes the temperature of a woodpecker’s brain to increase, but the birds seem to have a way dealing with that, too. Woodpeckers usually peck in short bursts with breaks in between, and the researchers think that these pauses give the brain time to cool down before the head banging starts again and brings the temperature back up.

This story was originally published in 2012. It was updated with new information in 2014.

nextArticle.image_alt|e
iStock
Do 'Close Door' Buttons in Elevators Actually Do Anything?
iStock
iStock

When you’re running late for work, one small comfort is finding an empty elevator waiting for you at your office building. You scurry inside, and since no one else is waiting to enter, you jab the 'close door' button. The doors comply, the elevator starts moving, and you breathe a sigh of relief.

This is a familiar scenario for many, but it’s also a big fat lie. That’s because most of the door-close buttons in U.S. elevators don’t actually work. In fact, they’re programmed that way.

But before you get ready to send off a strongly worded email to your office building’s elevator manufacturer, you may want to hear why this is the case. When the Americans With Disabilities Act was first passed in 1990, certain requirements for elevators were outlined, such as the installation of raised buttons, braille signs, and audible signals.

The act ensured that someone with a disability would have enough time to get inside, stipulating that elevator doors must remain fully open for at least three seconds and thereby preventing the button from cutting that time short. Some elevator manufacturers took it one step further by deactivating the button entirely.

Since the life span of an elevator is about 25 years and the Disabilities Act has been around for 28 years, it’s safe to assume that most of the elevators in operation today do not have a functioning 'close door' button, The New York Times reports. Only firefighters are able to close elevator doors manually through the use of a key.

It's important to note that there are exceptions to this rule, though. As the New York Daily News noted, New York City elevators are required by law to have working 'close door' buttons, even though some operate on a long delay (so long, in fact, that it calls the button's usefulness into question).

However, you’re in luck if you’re taking a lift (which, of course, is British for “elevator”). 'Close door' buttons are fully functional in most elevators in the UK, according to The Telegraph. A spokesman for the Lift and Escalator Industry Association told the newspaper that not all elevators have the button, but when they’re present, they do work. Again, the time it takes for the doors to shut after pressing the button varies from lift to lift.

While U.S. elevator manufacturers have a seemingly good reason for disabling the 'close door' button, some may question the point of propagating the myth and installing a button that serves no purpose in the first place. In response, some would argue that placebo buttons serve an important psychological function in society.

"Perceived control is very important," Harvard psychologist Ellen J. Langer told The New York Times. "It diminishes stress and promotes well-being."

That’s right: By believing that you’re in control of your fate—or at least how quickly you can make it up to the sixth floor—you’re better off. It doesn’t end with elevators, either. Buttons placed at city crosswalks are often disabled, and the thermostats in many office buildings are rigged so that the temperature can’t be altered (even if the numbers appear to change).

Some might swear up and down that elevator 'close door' buttons work, but this, too, could be your brain deceiving you. As author David McRaney wrote in an essay: “If you happen to find yourself pressing a nonfunctional close-door button, and later the doors close, you’ll probably never notice because a little spurt of happiness will cascade through your brain once you see what you believe is a response to your action. Your behavior was just reinforced. You will keep pressing the button in the future.”

According to The New Yorker, these buttons are designed to alleviate some of the subconscious anxiety that comes from stepping inside a tiny box that's hoisted up some 20 or 40 or 80 floors by a cable: “Elevator design is rooted in deception—to disguise not only the bare fact of the box hanging by ropes but also the tethering of tenants to a system over which they have no command."

So now you know: Next time you’re running late to work, take comfort in the fact that those few extra seconds you would’ve saved by pressing a functioning 'close door' button aren’t worth all that much in the long run.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

nextArticle.image_alt|e
iStock
What’s the Difference Between Prison and Jail?
iStock
iStock

Many people use the terms jail and prison interchangeably, and while both terms refer to areas where people are held, there's a substantial difference between the two methods of incarceration. Where a person who is accused of a crime is held, and for how long, is a factor in determining the difference between the two—and whether a person is held in a jail or a prison is largely determined by the severity of the crime they have committed.

A jail (or, for our British friends, a gaol) refers to a small, temporary holding facility—run by local governments and supervised by county sheriff departments—that is designed to detain recently arrested people who have committed a minor offense or misdemeanor. A person can also be held in jail for an extended period of time if the sentence for their offense is less than a year. There are currently 3163 local jail facilities in the United States.

A jail is different from the similarly temporary “lockup”—sort of like “pre-jail”—which is located in local police departments and holds offenders unable to post bail, people arrested for public drunkenness who are kept until they are sober, or, most importantly, offenders waiting to be processed into the jail system.

A prison, on the other hand, is usually a large state- or federal-run facility meant to house people convicted of a serious crime or felony, and whose sentences for those crimes surpass 365 days. A prison could also be called a “penitentiary,” among other names.

To be put in a state prison, a person must be convicted of breaking a state law. To be put in a federal prison, a person must be convicted of breaking federal law. Basic amenities in a prison are more extensive than in a jail because, obviously, an inmate is likely to spend more than a year of his or her life confined inside a prison. As of 2012, there were 4575 operating prisons in the U.S.—the most in the world. The country with the second highest number of operating prisons is Russia, which has just 1029 facilities.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios