New Technique Can Spot a Heart Attack in the Making Long Before It Happens

iStock
iStock | iStock

Cardiology experts have developed a noninvasive way of measuring the fat around a person's blood vessels, which could help determine their risk for dangerous cardiac events. The researchers described their technique today in the journal Science Translational Medicine.

Heart attacks are incredibly common, affecting around 750,000 Americans every year. Heart disease is the number one cause of mortality in the U.S., responsible for one out of every four deaths. There are many reasons for this. Among them is the difficulty of identifying at-risk patients before it's too late.

Cardiologists' current method of choice uses a metric called coronary calcification score (CCS) to measure the hardening of a patient's arteries. CCS is a reliable way to predict future heart problems, paper co-author Charalambos Antoniades said in a statement, but it has its limitations.

"When coronary calcification is detected," he said, "it is already too late, as the calcification is not reversible."

And so, rather than measuring calcification, many researchers have begun looking for a way to measure blood vessel inflammation, which is usually a pretty good—and early—predictor of heart disease.

The inflammation itself can be hard to see without entering a patient's body. But recent studies have shown that it rarely travels alone: Blood vessels that are inflamed are also often wrapped in larger fat cells than healthy vessels.

With this link in mind, Antoniades and his colleagues decided to try measuring the fat cells instead. They reviewed computed tomography scans from 453 patients about to undergo heart surgery, and used these data to create what they call the fat attenuation index (FAI). The higher a patient's FAI, the more inflammation they had, and the more advanced or severe their heart disease.

The researchers then compared the FAI of 40 additional patients with the results of invasive scans of the inflammation in their hearts. Sure enough, each patient's FAI matched the swelling onscreen.

There are many benefits to using FAI, the authors say. Not only is it noninvasive and accurate, but it can be used in tandem with CCS and other methods for an even more complete picture. The next step will be validating the test's safety and accuracy in clinical trials.

FAI scans "could help direct these new types of treatments to the appropriate subgroups of patients at greatest risk," Antoniades says, "reducing costs and targeting more powerful drugs to the patients who will benefit most."