These Scientists Intentionally Fly Into Hurricanes

NOAA’s WP-3D Orion (top) and Gulfstream IV-SP (bottom)
NOAA’s WP-3D Orion (top) and Gulfstream IV-SP (bottom)
NOAA

Hurricanes are a terrifying display of nature's power. Even last century, a perfectly sunny day could turn into unimaginable horror without any warning at all, as storms leveled entire towns and upended thousands of lives. We've come a long way since those dark days, and now we can watch hurricanes churn over the ocean in weather broadcasts in time to get out of the way. One of the best ways we can follow these storms is thanks to the men and women who make up the so-called (yes, actually) Hurricane Hunters.

The Hurricane Hunters are scientists working for both NOAA and the United States Air Force who fly airplanes into the worst parts of a hurricane to tell us first-hand what the storm is doing. Bad-ass scientists began regularly flying into storms (on purpose) after World War II, and today the practice is a standard part of hurricane forecasting in the United States. If satellite and radar imagery of a storm are like doctors taking an x-ray of your body, the work of the Hurricane Hunters is like drawing blood, sampling the inside of the storm to get a good idea of what it's doing at the moment.

NOAA's two famous Hurricane Hunter aircraft are Lockheed WP-3D Orions—nicknamed "Miss Piggy" and "Kermit"—that are equipped with special sensors and devices that help the meteorologists look at the storm and understand what makes it tick. The U.S. Air Force's 53rd Weather Reconnaissance Squadron also operates a fleet of 10 WC-130J Hercules aircraft that utilize similar equipment when they fly out into storms.

radar image of Hurricane Matthew, September 2016
A radar image of Hurricane Matthew over the southern Caribbean Sea on September 30, 2016, taken from a NOAA WP-3D Orion.
NOAA-AOC/Google Earth

All of the aircraft are equipped with Doppler weather radar that helps both the airplane crew and meteorologists back on dry ground understand the internal structure of a storm. This radar imagery is useful for seeing the structure of the eyewall—important for determining its strength and longevity—as well as information about rain bands and any intrusions of dry air that could affect the storm's future.

The most important feature of all Hurricane Hunter aircraft is dropsondes, or small tubes filled with weather sensors that are dropped from the aircraft into the storm. Dropsondes work on the same principle as weather balloons, but the sensors go in the opposite direction—up to down. These sensor packages measure conditions like temperature, dew point (moisture), and air pressure, while GPS sensors help determine wind speed and direction. This information is relayed back to the crew in real-time. Dropsondes help meteorologists measure the lowest surface air pressure within the eye of a storm as well as the highest wind speeds in the storm.

One of the most innovative tools the Hurricane Hunters use is a piece of technological wizardry known as a Stepped-Frequency Microwave Radiometer, or SFMR. The SFMR is a device attached to the wing of the aircraft that monitors the amount of microwave radiation being reflected beneath the plane by factors like waves, sea foam, and rainfall rates. Meteorologists are able to use data collected by the SFMR to accurately estimate the wind speed beneath the aircraft. In fact, the National Hurricane Center was able to use data collected by an SFMR on one of the Air Force's planes to determine that Hurricane Patricia's peak winds reached a record-breaking 215 mph [PDF] off the western coast of Mexico in October 2015, which is the highest wind speed ever recorded in a tropical cyclone anywhere in the world.

NOAA also uses a Gulfstream IV-SP aircraft to survey the environments around and ahead of tropical cyclones as they draw closer to land. These aircraft fly at high altitudes and release dropsondes to measure both moisture and wind speed and direction to help meteorologists better understand the environment into which the storm is heading. This data, along with more frequent weather balloon releases on land, can be ingested into weather models to help forecasters create more accurate predictions for the eventual track a tropical storm or hurricane will take—and help keep you safe.

Denver's Temperature Dropped a Record 64 Degrees In 24 Hours

Leonid Ikan/iStock via Getty Images
Leonid Ikan/iStock via Getty Images

One sure sign summer is over: On Wednesday, residents of Denver, Colorado were experiencing a comfortable 82-degree day. Just before midnight, the temperature dropped to 29 degrees. Between Wednesday and Thursday afternoon, the Denver airport recorded a differential of 79 degrees down to 24 degrees. At one point on Wednesday, a staggering 45-degree drop was seen in the span of just three hours.

All told, a one-day span saw a 64-degree change in temperature, from a high of 83 to a low of 19, a record for the state in the month of October and just two degrees shy of matching Denver’s all-time record drop of 66 degrees on January 25, 1872. On that date, the temperature plummeted from 46 degrees to -20 degrees.

Back to 2019: Citizens tried their best to cope with the jarring transition in their environment, to mixed success. On Wednesday, the city’s Washington Park was full of joggers and shorts-wearing outdoor enthusiasts. Thursday, only the most devoted runners were out, bundled up against the frigid weather.

The cold snap also brought with it some freezing drizzle which prompted several vehicular accidents, including 200 reported during Thursday's morning commute. It’s expected to warm up some in the coming days, but residents shouldn't get too comfortable: Melting ice could lead to potholes.

[h/t KRDO]

Fall Foliage Is Running Late This Year

Free art director/iStock via Getty Images
Free art director/iStock via Getty Images

The August arrival of the pumpkin spice latte might have you feeling like fall is in full swing already, but plants aren’t quite so impressionable. According to Travel + Leisure, the best fall foliage could be coming a little later than usual this year.

Historically, the vibrant transformation starts to sweep through northern regions of the Rocky Mountains, Minnesota, and New England in mid-September, and reaches its peak by the end of the month. Other areas, including the Appalachians and Midwest states, don’t see the brightest autumn leaves until early or mid-October. The Weather Channel reports that this year, however, the forecast from the National Oceanic and Atmospheric Administration predicts unseasonably warm temperatures for the next two weeks, which could impede the color-changing process.

Warm temperatures aren’t necessarily bad for fall foliage, as long as they occur during the day and are offset by cool nights. Since meteorologists don’t expect the overnight temperatures to drop off yet, plants will likely continue producing enough chlorophyll to keep their leaves green in the coming days.

The good news is that this year’s fall foliage should only be about a week late, and meteorologist David Epstein thinks that when leaves do start to change color, we’re in for an especially beautiful treat. If the current weather forecast holds, he told Boston.com, we'll "see a longer season than last year, we’d see a more vibrant season than last year, and it would come on a little earlier than last year, which was so late.”

Though poor weather conditions like early snow, heavy rain, drought, or strong winds can cause leaves to fall prematurely, most trees right now are in a good position to deliver a brilliant display of color after a healthy, rain-filled summer.

Find out when you’ll experience peak fall foliage in your area with this interactive map.

[h/t Travel + Leisure]

SECTIONS

arrow
LIVE SMARTER