CLOSE
ThinkStock
ThinkStock

Why Does Music Give You Chills?

ThinkStock
ThinkStock

When your playlist strikes all the right chords, your body can go on a physiological joyride. Your heart rate increases. Your pupils dilate. Your body temperature rises. Blood redirects to your legs. Your cerebellum—mission control for body movement—becomes more active. Your brain flushes with dopamine and a tingly chill whisks down your back.

About 50 percent of people get chills when listening to music. Research shows that’s because music stimulates an ancient reward pathway in the brain, encouraging dopamine to flood the striatum—a part of the forebrain activated by addiction, reward, and motivation. Music, it seems, may affect our brains the same way that sex, gambling, and potato chips do.

Strangely, those dopamine levels can peak several seconds before the song’s special moment. That’s because your brain is a good listener—it’s constantly predicting what’s going to happen next. (Evolutionarily speaking, it’s a handy habit to have. Making good predictions is essential for survival.)

But music is tricky. It can be unpredictable, teasing our brains and keeping those dopamine triggers guessing. And that’s where the chills may come in. Because when you finally hear that long awaited chord, the striatum sighs with dopamine-soaked satisfaction and—BAM—you get the chills. The greater the build-up, the greater the chill.

Gray Areas

But there are competing theories. Neuroscientist Jaak Panksepp, for example, discovered that sad music triggers chills more often than happy music. He argues that a melancholy tune activates an ancient, chill-inducing mechanism—a distress response our ancestors felt when separated from family. When a ballad makes us feel nostalgic or wistful, that evolutionary design kicks into gear.

What’s interesting about Panksepp’s theory, though, is that chills don’t sadden most people. The experience is overwhelmingly positive. Recent research shows that sad music actually evokes positive emotions—sadness experienced through art is more pleasant than the sadness you experience from a bad day at the office.  

And this may hint at another theory. The amygdala, which processes your emotions, responds uniquely to music. A somber tune may activate a fear response in the amygdala, making your hair stand on end. When that happens, your brain quickly reviews whether there’s any real danger. When it realizes there’s nothing to worry about, that fear response becomes positive. The fear subsides but the chill remains.

Anything Goes

You can feel chills from any genre, whether it’s Mozart, Madonna, tango, or techno. It’s the structure—not the style—that counts. Goosebumps most often occur when something unexpected happens: A new instrument enters, the form shifts, the volume suddenly dims. It’s all about the element of surprise.

Well, maybe.

The most powerful chills may occur when you know what’s coming next. When our expectations are being met, the nucleus accumbens becomes more active. This ties back to that dopamine-inducing guessing game our brain likes to play. As a result, being familiar can enhance the thrill of the chill. (Perhaps that’s why 90 percent of musicians report feeling chills.)

Your personality matters, too. Scientists at UNC Greensboro found that people who are more open to new experiences are more likely to feel a quiver down their spine (possibly because open individuals are more likely to play instruments). Meanwhile, researchers in Germany found that people who felt chills were less likely to be thrill seekers, but were more reward-driven.

nextArticle.image_alt|e
Mark Ralston/AFP/Getty Images
arrow
Big Questions
What Causes Sinkholes?
Mark Ralston/AFP/Getty Images
Mark Ralston/AFP/Getty Images

This week, a sinkhole opened up on the White House lawn—likely the result of excess rainfall on the "legitimate swamp" surrounding the storied building, a geologist told The New York Times. While the event had some suggesting we call for Buffy's help, sinkholes are pretty common. In the past few days alone, cavernous maws in the earth have appeared in Maryland, North Carolina, Tennessee, and of course Florida, home to more sinkholes than any other state.

Sinkholes have gulped down suburban homes, cars, and entire fields in the past. How does the ground just open up like that?

Sinkholes are a simple matter of cause and effect. Urban sinkholes may be directly traced to underground water main breaks or collapsed sewer pipelines, into which city sidewalks crumple in the absence of any structural support. In more rural areas, such catastrophes might be attributed to abandoned mine shafts or salt caverns that can't take the weight anymore. These types of sinkholes are heavily influenced by human action, but most sinkholes are unpredictable, inevitable natural occurrences.

Florida is so prone to sinkholes because it has the misfortune of being built upon a foundation of limestone—solid rock, but the kind that is easily dissolved by acidic rain or groundwater. The karst process, in which the mildly acidic water wears away at fractures in the limestone, leaves empty space where there used to be stone, and even the residue is washed away. Any loose soil, grass, or—for example—luxury condominiums perched atop the hole in the ground aren't left with much support. Just as a house built on a weak foundation is more likely to collapse, the same is true of the ground itself. Gravity eventually takes its toll, aided by natural erosion, and so the hole begins to sink.

About 10 percent of the world's landscape is composed of karst regions. Despite being common, sinkholes' unforeseeable nature serves as proof that the ground beneath our feet may not be as solid as we think.

A version of this story originally ran in 2014.

nextArticle.image_alt|e
iStock
arrow
Big Questions
How Are Speed Limits Set?
iStock
iStock

When driving down a road where speed limits are oppressively low, or high enough to let drivers get away with reckless behavior, it's easy to blame the government for getting it wrong. But you and your fellow drivers play a bigger a role in determining speed limits than you might think.

Before cities can come up with speed limit figures, they first need to look at how fast motorists drive down certain roads when there are no limitations. According to The Sacramento Bee, officials conduct speed surveys on two types of roads: arterial roads (typically four-lane highways) and collector streets (two-lane roads connecting residential areas to arterials). Once the data has been collected, they toss out the fastest 15 percent of drivers. The thinking is that this group is probably going faster than what's safe and isn't representative of the average driver. The sweet spot, according to the state, is the 85th percentile: Drivers in this group are thought to occupy the Goldilocks zone of safety and efficiency.

Officials use whatever speed falls in the 85th percentile to set limits for that street, but they do have some wiggle room. If the average speed is 33 mph, for example, they’d normally round up to 35 or down to 30 to reach the nearest 5-mph increment. Whether they decide to make the number higher or lower depends on other information they know about that area. If there’s a risky turn, they might decide to round down and keep drivers on the slow side.

A road’s crash rate also comes into play: If the number of collisions per million miles traveled for that stretch of road is higher than average, officials might lower the speed limit regardless of the 85th percentile rule. Roads that have a history of accidents might also warrant a special signal or sign to reinforce the new speed limit.

For other types of roads, setting speed limits is more of a cut-and-dry process. Streets that run through school zones, business districts, and residential areas are all assigned standard speed limits that are much lower than what drivers might hit if given free rein.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios