10 Facts About the Internet's Undersea Cables

In describing the system of wires that comprises the Internet, Neal Stephenson once compared the earth to a computer motherboard. From telephone poles suspending bundles of cable to signs posted warning of buried fiber optic lines, we are surrounded by evidence that at a basic level, the Internet is really just a spaghetti-work of really long wires. But what we see is just a small part of the physical makeup of the net. The rest of it can be found in the coldest depths of the ocean. Here are 10 things you might not know about the Internet’s system of undersea cables.



Ninety-nine percent of international data is transmitted by wires at the bottom of the ocean called submarine communications cables. In total, they are hundreds of thousands of miles long and can be as deep as Everest Is tall. The cables are installed by special boats called cable-layers. It’s more than a matter of dropping wires with anvils attached to them—the cables must generally be run across flat surfaces of the ocean floor, and care is taken to avoid coral reefs, sunken ships, fish beds, and other ecological habitats and general obstructions. The diameter of a shallow water cable is about the same as a soda can, while deep water cables are much thinner—about the size of a Magic Marker. The size difference is related to simple vulnerability—there’s not much going on 8000 feet below sea level; consequently, there’s less need for galvanized shielding wire. Cables located at shallow depths are buried beneath the ocean floor using high pressure water jets. Though per-mile prices for installation change depending on total length and destination, running a cable across the ocean invariably costs hundreds of millions of dollars.


There’s disagreement as to why, exactly, sharks like gnawing on submarine communications cables. Maybe it has something to do with electromagnetic fields. Maybe they’re just curious. Maybe they’re trying to disrupt our communications infrastructure before mounting a land-based assault. (My theory.) The point remains that sharks are chewing on the Internet, and sometimes damage it. In response, companies such as Google are shielding their cables in shark-proof wire wrappers.


It seems like every couple of years, some well-meaning construction worker puts his bulldozer in gear and kills Netflix for the whole continent. While the ocean is free of construction equipment that might otherwise combine to form Devastator, there are many ongoing aquatic threats to the submarine cables. Sharks aside, the Internet is ever at risk of being disrupted by boat anchors, trawling by fishing vessels, and natural disasters. A Toronto-based company has proposed running a cable through the Arctic that connects Tokyo and London. This was previously considered impossible, but climate change and the melting ice caps have moved the proposal firmly into the doable-but-really-expensive category.


In 1854, installation began on the first transatlantic telegraph cable, which connected Newfoundland and Ireland. Four years later the first transmission was sent, reading: “Laws, Whitehouse received five minutes signal. Coil signals too weak to relay. Try drive slow and regular. I have put intermediate pulley. Reply by coils.” This is, admittedly, not very inspiring. (“Whitehouse” referred to Wildman Whitehouse, the chief electrician of the Atlantic Telegraph Company, who we’ve discussed previously.) For historical context: During those four years of cable construction, Charles Dickens was still writing novels; Walt Whitman published Leaves of Grass; a small settlement called Dallas was formally incorporated in Texas; and Abraham Lincoln, candidate for the U.S. Senate, gave his “House Divided” speech.


During the height of the Cold War, the USSR often transmitted weakly encoded messages between two of its major naval bases. Strong encryption was a bother—and also overkill—thought Soviet officers, as the bases were directly linked by an undersea cable located in sensor-laden Soviet territorial waters. No way would the Americans risk World War III by trying to somehow access and tap that cable. They didn’t count on the U.S.S. Halibut, a specially fitted submarine capable of slipping by Soviet defenses. The American submarine found the cable and installed a giant wiretap, returning monthly to gather the transmissions it had recorded. This operation, called IVY BELLS, was later compromised by a former NSA analyst named Ronald Pelton, who sold information on the mission to the Soviets. Today, tapping submarine communications cables is standard operating procedure for spy agencies.


With respect to electronic espionage, one big advantage held by the United States is the key role its scientists, engineers, and corporations played in inventing and building large parts of the global telecommunications infrastructure. Major lines of data tend to cross into American borders and territorial water, making wiretapping a breeze, relatively speaking. When documents stolen by former NSA analyst Edward Snowden came to light, many countries were outraged to learn the extent to which American spy agencies were intercepting foreign data. As a result, some countries are reconsidering the infrastructure of the Internet itself. Brazil, for example, has launched a project to build a submarine communications cable to Portugal that not only bypasses the United States entirely, but also specifically excludes U.S. companies from involvement.


There are well over a thousand satellites in orbit, we’re landing probes on comets, and we’re planning missions to Mars. We’re living in the future! It just seems self-evident that space would be a better way to virtually “wire” the Internet than our current method of running really long cables-slash-shark-buffets along the ocean floor. Surely satellites would be better than a technology invented before the invention of the telephone—right? As it turns out, no. (Or at least, not yet.) Though fiber optic cables and communications satellites were both developed in the 1960s, satellites have a two-fold problem: latency and bit loss. Sending and receiving signals to and from space takes time. Meanwhile, researchers have developed optical fibers that can transmit information at 99.7 percent the speed of light. For an idea of what the Internet would be like without undersea cables, visit Antarctica, the only continent without a physical connection to the net. The continent relies on satellites, and bandwidth is at a premium, which is no small problem when one considers the important, data-intensive climate research underway. Today, Antarctic research stations produce more data than they can transmit through space.


The good news is that it’s hard to cut through a submarine communications cable, if only because of the thousands of very lethal volts running through each of them. The bad news is that it is possible, as seen in Egypt in 2013. There, just north of Alexandria, men in wetsuits were apprehended having intentionally cut through the South-East-Asia-Middle-East-West-Europe 4 cable, which runs 12,500 miles and connects three continents. Internet speeds in Egypt were crippled by 60 percent until the line could be repaired.


If you think replacing that one Ethernet cable you can’t quite reach behind your desk is a pain, try replacing a solid, broken garden hose at the bottom of the ocean. When a submarine cable is damaged, special repair ships are dispatched. If the cable is located in shallow waters, robots are deployed to grab the cable and haul it to the surface. If the cable is in deep waters (6500 feet or greater), the ships lower specially designed grapnels that grab onto the cable and hoist it up for mending. To make things easier, grapnels sometimes cut the damaged cable in two, and repair ships raise each end separately for patching above the water.


As of 2014, there are 285 communications cables at the bottom of the ocean, and 22 of them are not yet in use. These are called "dark cables." (Once they’re switched on, they’re said to be “lit.”) Submarine cables have a life expectancy of 25 years, during which time they are considered economically viable from a capacity standpoint. Over the last decade, however, global data consumption has exploded. In 2013, Internet traffic was 5 gigabytes per capita; this number is expected to reach 14 gigabytes per capita by 2018. Such an increase would obviously pose a capacity problem and require more frequent cable upgrades. However, new techniques in phase modulation and improvements in submarine line terminal equipment (SLTE) have boosted capacity in some places by as much as 8000 percent. The wires we have are more than ready for the traffic to come.

Sorry, Plant Parents: Study Shows Houseplants Don’t Improve Air Quality

sagarmanis/iStock via Getty Images
sagarmanis/iStock via Getty Images

Sometimes accepted wisdom needs a more thorough vetting process. Case in point: If you’ve ever heard that owning plants can improve indoor air quality in your home or office and act as a kind of organic air purifier or cleaner, you may be disappointed to learn that there’s not a whole lot of science to back that theory up. In fact, plants will do virtually nothing for you in that respect.

This botanic bummer comes from Drexel University researchers, who just published a study in the Journal of Exposure Science and Environmental Epidemiology. Examining 30 years of previous findings, Michael Waring, an associate professor of architectural and environmental engineering, found only scant evidence that plants do anything to filter contaminants from indoor air.

Many of these studies were limited, the study says, by unrealistic conditions. Plants would often be placed in a sealed chamber, with a single volatile organic compound (VOC) introduced to contaminate the air inside. While the VOCs decreased over a period of hours or days, Waring found that the studies placed little emphasis on measuring the clean air delivery rate (CADR), or how effectively an air purifier can “clean” the space. When Waring converted the studies' results to CADR, the plants's ability to filter contaminants was much weaker than simply introducing fresh air to disperse VOCs. (Additionally, no one is likely to live in a sealed chamber.)

The notion of plants as natural air filters likely stemmed from a NASA experiment in 1989 which argued that plants could remove certain compounds from the air. As with the other studies, it took place in a sealed environment, which made the results difficult to translate to a real-world environment.

Plants can clean air, but their efficiency is so minimal that Waring believes it would take between 10 and 1000 of them per square meter of floor space to have the same effect as simply opening a window or turning on the HVAC system to create an air exchange. Enjoy all the plants you like for their beauty, but it’s probably unrealistic to expect them to help you breathe any easier.

10 Radiant Facts About Marie Curie

Photo Illustration by Mental Floss. Curie: Hulton Archive, Getty Images. Background: iStock
Photo Illustration by Mental Floss. Curie: Hulton Archive, Getty Images. Background: iStock

Born Maria Salomea Skłodowska in Poland in 1867, Marie Curie grew up to become one of the most noteworthy scientists of all time. Her long list of accolades is proof of her far-reaching influence, but not every stride she made in the fields of chemistry, physics, and medicine was recognized with an award. Here are some facts you might not know about the iconic researcher.

1. Marie Curie's parents were teachers.

Maria Skłodowska was the fifth and youngest child of two Polish educators. Her parents placed a high value on learning and insisted that all their children—including their daughters—receive a quality education at home and at school. Maria received extra science training from her father, and when she graduated from high school at age 15, she was first in her class.

2. Marie Curie had to seek out alternative education for women.

After collecting her high school diploma, Maria had hoped to study at the University of Warsaw with her sister, Bronia. Because the school didn't accept women, the siblings instead enrolled at the Flying University, a Polish college that welcomed female students. It was still illegal for women to receive higher education at the time so the institution was constantly changing locations to avoid detection from authorities. In 1891 Maria moved to Paris to live with her sister, where she enrolled at the Sorbonne to continue her education.

3. Marie Curie is the only person to win Nobel Prizes in two separate sciences.

Marie Curie and her husband, Pierre Curie, in 1902.
Marie Curie and her husband, Pierre Curie, in 1902.
Agence France Presse, Getty Images

In 1903, Marie Curie made history when she won the Nobel Prize in physics with her husband, Pierre, and with physicist Henri Becquerel for their work on radioactivity, making her the first woman to receive the honor. The second Nobel Prize she took home in 1911 was even more historic: With that win in the chemistry category, she became the first person to win the award twice. And she remains the only person to ever receive Nobel Prizes for two different sciences.

4. Marie Curie added two elements to the Periodic Table.

The second Nobel Prize Marie Curie received recognized her discovery and research of two elements: radium and polonium. The former element was named for the Latin word for ray and the latter was a nod to her home country, Poland.

5. Nobel Prize-winning ran in Marie Curie's family.

Marie Curie's daughter Irène Joliot-Curie, and her husband, Frédéric Joliot-Curie, circa 1940.
Marie Curie's daughter Irène Joliot-Curie, and her husband, Frédéric Joliot-Curie, circa 1940.
Central Press, Hulton Archive // Getty Images

When Marie Curie and her husband, Pierre, won their Nobel Prize in 1903, their daughter Irène was only 6 years old. She would grow up to follow in her parents' footsteps by jointly winning the Nobel Prize for chemistry with her husband, Frédéric Joliot-Curie, in 1935. They were recognized for their discovery of "artificial" radioactivity, a breakthrough made possible by Irène's parents years earlier. Marie and Pierre's other son-in-law, Henry Labouisse, who married their younger daughter, Ève Curie, accepted a Nobel Prize for Peace on behalf of UNICEF, of which he was the executive director, in 1965. This brought the family's total up to five.

6. Marie Curie did her most important work in a shed.

The research that won Marie Curie her first Nobel Prize required hours of physical labor. In order to prove they had discovered new elements, she and her husband had to produce numerous examples of them by breaking down ore into its chemical components. Their regular labs weren't big enough to accommodate the process, so they moved their work into an old shed behind the school where Pierre worked. According to Curie, the space was a hothouse in the summer and drafty in the winter, with a glass roof that didn't fully protect them from the rain. After the famed German chemist Wilhelm Ostwald visited the Curies' shed to see the place where radium was discovered, he described it as being "a cross between a stable and a potato shed, and if I had not seen the worktable and items of chemical apparatus, I would have thought that I was been played a practical joke."

7. Marie Curie's notebooks are still radioactive.

Marie Curie's journals
Hulton Archive, Getty Images

When Marie Curie was performing her most important research on radiation in the early 20th century, she had no idea of the effects it would have on her health. It wasn't unusual for her to walk around her lab with bottles of polonium and radium in her pockets. She even described storing the radioactive material out in the open in her autobiography. "One of our joys was to go into our workroom at night; we then perceived on all sides the feebly luminous silhouettes of the bottles of capsules containing our products […] The glowing tubes looked like faint, fairy lights."

It's no surprise then that Marie Curie died of aplastic anemia, likely caused by prolonged exposure to radiation, in 1934. Even her notebooks are still radioactive a century later. Today they're stored in lead-lined boxes, and will likely remain radioactive for another 1500 years.

8. Marie Curie offered to donate her medals to the war effort.

Marie Curie had only been a double-Nobel Laureate for a few years when she considered parting ways with her medals. At the start of World War I, France put out a call for gold to fund the war effort, so Curie offered to have her two medals melted down. When bank officials refused to accept them, she settled for donating her prize money to purchase war bonds.

9. Marie Curie developed a portable X-ray to treat soldiers.

Marie Curie circa 1930
Marie Curie, circa 1930.
Keystone, Getty Images

Marie's desire to help her adopted country fight the new war didn't end there. After making the donation, she developed an interest in x-rays—not a far jump from her previous work with radium—and it didn't take her long to realize that the emerging technology could be used to aid soldiers on the battlefield. Curie convinced the French government to name her Director of the Red Cross Radiology Service and persuaded her wealthy friends to fund her idea for a mobile x-ray machine. She learned to drive and operate the vehicle herself and treated wounded soldiers at the Battle of the Marne, ignoring protests from skeptical military doctors. Her invention was proven effective at saving lives, and ultimately 20 "petite Curies," as the x-ray machines were called, were built for the war.

10. Marie Curie founded centers for medical research.

Following World War I, Marie Curie embarked on a different fundraising mission, this time with the goal of supporting her research centers in Paris and Warsaw. Curie's radium institutes were the site of important work, like the discovery of a new element, francium, by Marguerite Perey, and the development of artificial radioactivity by Irène and Frederic Joliot-Curie. The centers, now known as Institut Curie, are still used as spaces for vital cancer treatment research today.