How Far Can You Fall and Still Survive?

IStock
IStock

You’re on a plane. You’re bored. You stare out the window at the clouds. You wonder what would happen if you couldn’t resist the urge to open the emergency exit and plummet to the earth below. Is death certain? Or would you pick yourself up, set a broken bone or two, and proceed directly to a mental institution with a great story?

Let’s first toss out some variables that often bog down this fair—albeit morbid—question. Forget Felix Baumgartner, the man who filmed himself jumping from 128,100 feet. He had a cool pressurized suit and a parachute. And let’s set aside what free-fall experts have coined “wreckage riders,” those who have fallen while trapped inside a portion of broken aircraft. (The larger surface area increases air drag, slowing their descent. Still likely fatal, but the odds improve somewhat: Serbian flight attendant Vesna Vulovic fell 33,000 feet this way in 1972 and lived to tell her tale—once she woke up from her coma.)

Let’s instead restrict the question to a single individual without any equipment, encasement, or premeditation. You’ve ripped the exit door open like a lunatic. You begin to fall. What now?

We know for certain a person can survive a fall of at least 20,000 feet. That’s how far up World War II pilot Alan Magee was when he had to abandon his plane without a parachute. He crashed through a glass roof that likely helped spread out the impact. According to James Kakalios, Ph.D., a professor at the School of Physics and Astronomy at the University of Minnesota, how and where you land is one of the major factors in whether you get up from the ground or go 6 feet further into it.

“If you can make the time [landing] longer, the force needed to stop you is smaller,” he says. “Think of punching a wall or a mattress. The wall is rigid and the time of interaction is short so the force is large. People who have survived falls, they’ve managed to increase that time, even if it’s in milliseconds. From one millisecond to three, that’s three times longer, three times less force needed for the same change in momentum.” Magee’s glass landing likely reduced the impact; other survivors have plummeted into snow, trees, or something that can better absorb your landing than, say, concrete.

The other major factor? Slowing your descent. Increasing surface area means more energy is required to push air out of your way, slowing you down. The “flying squirrel” position, body splayed out, is preferred over falling feet or head first. “Increasing that drag is the biggest factor in keeping you alive,” Kakalios says. A parachute’s large surface area is best, obviously. Without one, fall belly down or try tumbling. “Drop a pen off the Empire State Building straight down and it might kill someone. But if it drops sideways, spinning end over end, it probably wouldn’t.”

You’re increasing air drag. You’re trying to land in snow or something absorbent. If you’ve passed out from lack of oxygen at high altitudes, you’ve woken up in time to orient yourself. Magee traveled 20,000 feet—nearly four miles—so you know survival is possible from there. What about going higher?

Kakalios stops short of offering a prediction, citing the numerous variables involved. (“Even how much clothing is fluttering behind you can affect surface profile,” he says.) So we pestered someone else: Paul Doherty, Ph.D., a physicist and Co-Director of the Exploratorium, a learning center in San Francisco, California.  

“As you get higher up, the air gets thinner and thinner,” he says. “You can spin so fast the blood can rush into your head and kill you. Or the friction with the elevation will burn you up. That’s why space shuttles have heat insulating tiles.”

Once terminal velocity (maximum acceleration, usually 120 miles per hour for average-sized humans) is reached, Doherty says, it doesn’t really matter whether you throw another 5000 or 10,000 feet on top of Magee’s 20,000: You’re not going to fall any faster. But start too high up and the lower atmospheric pressure means your blood might start to boil. That’s believed to happen around 63,000 feet, though data is obviously limited, and Doherty thinks it might be as high as 100,000. (NASA mandates pressure suits starting at 50,000 feet just to be on the safe side.)

So falling just under 63,000 feet is survivable, in theory? “Let’s say 60,000, Doherty says. Up to 100,000 if you wake up after passing out. And if your blood doesn’t boil. And if you can impact something.”

Stay on the plane.

Learn Python From Home for Just $50

Andrea Piacquadio / Pexels.com
Andrea Piacquadio / Pexels.com

It's difficult to think of a hobby or job that doesn’t involve some element of coding in its execution. Are you an Instagram enthusiast? Coding and algorithms are what bring your friends' posts to your feed. Can’t get enough Mental Floss? Coding brings the entire site to life on your desktop and mobile screens. Even sorting through playlists on Spotify uses coding. If you're tired of playing catch-up with all the latest coding techniques and principles, the 2020 Python Programming Certification Bundle is on sale for $49.99 to teach you to code, challenge your brain, and boost your resume to get your dream job.

Basically, coding is how people speak to computers (cue your sci-fi vision of a chat with a creepy, sentient computer), and while it does sound a bit futuristic, the truth is that people are talking to computers every day through a program called Python. The 2020 Python Programming Training Certification Bundle will teach you how to build web applications, database applications, and web visualizations in the world’s most popular programming language.

Python is also the language computers are using to communicate back to programmers. You’ll learn how Jupyter Notebook, NumPy, and pandas can enhance data analysis and data visualization techniques with Matplotlib.

Think back to your creepy, sci-fi visual from earlier; was it some form of artificial intelligence? Contrary to what you may have seen in the movies, artificial intelligence is something you can learn to create yourself. In the Keras Bootcamp, you’ll learn how to create artificial neural networks and deep-learning structures with Google’s powerful Deep Learning framework.

Coding is associated with endless text, numbers, and symbols, but the work code is performing is hardly limited to copy. Dig deep into image processing and computer vision tasks with sessions in OpenCV. You’ll give yourself an extra edge when you can use Python for sifting through information and implement machine learning algorithms on image classification.

Explore coding education with the bundle’s 12 courses, spanning from beginner to advanced levels, to elevate your skillset from home. The 2020 Python Programming Certification Bundle is on sale for $49.99.

 

The Complete 2020 Python Programming Certification Bundle - $49.99

See Deal



At Mental Floss, we only write about the products we love and want to share with our readers, so all products are chosen independently by our editors. Mental Floss has affiliate relationships with certain retailers and may receive a percentage of any sale made from the links on this page. Prices and availability are accurate as of the time of publication.

Why Did Noon Used to Mean 3 p.m.?

3 p.m. is basically noon for people who wake up at 12 p.m.
3 p.m. is basically noon for people who wake up at 12 p.m.
Mckyartstudio/iStock via Getty Images

If you’re a late sleeper, you might find yourself thinking 12 p.m. seems way too early to be considered midday, and the word noon would much better describe, say, 3 p.m. It turns out that ancient Romans would have agreed with you, if only for etymological reasons.

As Reader’s Digest explains, the days in ancient Rome were split into four periods of three hours each. The first hour was at sunrise around 6 a.m.—called prime, for first—followed by 9 a.m. (terce, denoting the third hour), 12 p.m. (sext, for sixth), and 3 p.m. (none, for ninth).

According to Merriam-Webster, Middle and Old English borrowed the time-keeping tradition, along with the Latin word for ninth, which was changed to nōn and eventually noon. Though we’re not sure exactly when or why noon started referring to 12 p.m. instead of 3 p.m., it could have something to do with Christian prayer traditions. In the Bible, Jesus’s crucifixion is said to have taken place at the ninth hour, and that’s when worshippers partook in their second of three daily prayers; the others were in the morning and evening. It’s possible that hungry monks were behind noon’s gradual shift from 3 p.m. to 12 p.m.—since their daily fast didn’t end until after the midday prayer, they had a built-in motive for moving it earlier.

While we didn’t exactly stay true to the original Latin meaning of noon, there’s another important remnant of ancient Rome hiding in the way we tell time today. Romans referred to 12 p.m. as meridiem, for midday, and so do we. A.M. is an abbreviation for ante meridiem, or before midday, and P.M. means post meridiem, or after midday.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.