How Real-Life Science Inspired Mary Shelley's Frankenstein

Mary Wollstonecraft Shelley (1797–1851)
Mary Wollstonecraft Shelley (1797–1851)
Hulton Archive/Getty Images

Mary Shelley's Frankenstein, published 200 years ago this year, is often called the first modern work of science fiction. It's also become a fixture of pop culture—so much so that even people who haven't read it know (or think they know) the story: An ambitious young scientist named Victor Frankenstein creates a grotesque but vaguely human creature from the spare parts of corpses, but he loses control of his creation, and chaos ensues. It's a wildly inventive tale, one that flowed from an exceptional young woman's imagination and, at the same time, reflected the anxieties over new ideas and new scientific knowledge that were about to transform the very fabric of life in the 19th century.

The woman we remember as Mary Shelley was born Mary Wollstonecraft Godwin, the daughter of political philosopher William Godwin and philosopher and feminist Mary Wollstonecraft (who tragically died shortly after Mary's birth). Hers was a hyper-literate household attuned to the latest scientific quests, and her parents (Godwin soon remarried) hosted many intellectual visitors. One was a scientist and inventor named William Nicholson, who wrote extensively on chemistry and on the scientific method. Another was the polymath Erasmus Darwin, grandfather of Charles.

At just 16 years old, Mary ran off with poet and philosopher Percy Bysshe Shelley, who was married at the time. A Cambridge graduate, Percy was a keen amateur scientist who studied the properties of gases and the chemical make-up of food. He was especially interested in electricity, even performing an experiment reminiscent of Benjamin Franklin's famous kite test.

The genesis of Frankenstein can be traced back to 1816, when the couple spent the summer at a country house on Lake Geneva, in Switzerland. Lord Byron, the famous poet, was in a villa nearby, accompanied by a young doctor friend, John Polidori. The weather was miserable that summer. (We now know the cause: In 1815, Mount Tambora in Indonesia erupted, spewing dust and smoke into the air which then circulated around the world, blotting out the Sun for weeks on end, and triggering widespread crop failure; 1816 became known as the "year without a summer.")

Mary and her companions—including her infant son, William, and her step-sister, Claire Clairmont—were forced to spend their time indoors, huddled around the fireplace, reading and telling stories. As storm after storm raged outside, Byron proposed that they each write a ghost story. A few of them tried; today, Mary's story is the one we remember.

THE SCIENCE THAT INSPIRED SHELLEY

lithograph for the 1823 production of the play Presumption; or, the Fate of Frankenstein
A lithograph for the 1823 production of the play Presumption; or, the Fate of Frankenstein, inspired by Shelley's novel.
Wikimedia Commons // Public Domain

Frankenstein is, of course, a work of fiction, but a good deal of real-life science informed Shelley's masterpiece, beginning with the adventure story that frames Victor Frankenstein's tale: that of Captain Walton's voyage to the Arctic. Walton hopes to reach the North Pole (a goal that no one would achieve in real life for almost another century) where he might "discover the wondrous power that attracts the needle"—referring to the then-mysterious force of magnetism. The magnetic compass was a vital tool for navigation, and it was understood that the Earth itself somehow functioned like a magnet; however, no one could say how and why compasses worked, and why the magnetic poles differed from the geographical poles.

It's not surprising that Shelley would have incorporated this quest into her story. "The links between electricity and magnetism was a major subject of investigation during Mary's lifetime, and a number of expeditions departed for the North and South Poles in the hopes of discovering the secrets of the planet's magnetic field," writes Nicole Herbots in the 2017 book Frankenstein: Annotated for Scientists, Engineers, and Creators of All Kinds

Victor recounts to Walton that, as a student at the University of Ingolstadt (which still exists), he was drawn to chemistry, but one of his instructors, the worldly and affable Professor Waldman, encouraged him to leave no branch of science unexplored. Today scientists are highly specialized, but a scientist in Shelley's time might have a broad scope. Waldman advises Victor: "A man would make but a very sorry chemist if he attended to that department of human knowledge alone. If your wish is to become really a man of science, and not merely a petty experimentalist, I should advise you to apply to every branch of natural philosophy, including mathematics."

But the topic that most commands Victor's attention is the nature of life itself: "the structure of the human frame, and, indeed, any animal endued with life. Whence, I often asked myself, did the principle of life proceed?" It is a problem that science is on the brink of solving, Victor says, "if cowardice or carelessness did not restrain our inquiries."

In the era that Shelley wrote these words, the subject of what, exactly, differentiates living things from inanimate matter was the focus of impassioned debate. John Abernethy, a professor at London's Royal College of Surgeons, argued for a materialist account of life, while his pupil, William Lawrence, was a proponent of "vitalism," a kind of life force, an "invisible substance, analogous to on the one hand to the soul and on the other to electricity."

Another key thinker, the chemist Sir Humphry Davy, proposed just such a life force, which he imagined as a chemical force similar to heat or electricity. Davy's public lectures at the Royal Institution in London were a popular entertainment, and the young Shelley attended these lectures with her father. Davy remained influential: in October 1816, when she was writing Frankenstein almost daily, Shelley noted in her diary that she was simultaneously reading Davy's Elements of Chemical Philosophy.

Davy also believed in the power of science to improve the human condition—a power that had only just been tapped. Victor Frankenstein echoes these sentiments: Scientists "have indeed performed miracles," he says. "They penetrate into the recesses of Nature, and show how she works in her hiding-places. They ascend into the heavens; they have discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and almost unlimited Powers …"

Victor pledges to probe even further, to discover new knowledge: "I will pioneer a new way, explore unknown Powers, and unfold to the world the deepest mysteries of Creation."

FROM EVOLUTION TO ELECTRICITY

Closely related to the problem of life was the question of "spontaneous generation," the (alleged) sudden appearance of life from non-living matter. Erasumus Darwin was a key figure in the study of spontaneous generation. He, like his grandson Charles, wrote about evolution, suggesting that all life descended from a single origin.

Erasmus Darwin is the only real-life scientist to be mentioned by name in the introduction to Shelley's novel. There, she claims that Darwin "preserved a piece of vermicelli in a glass case, till by some extraordinary means it began to move with a voluntary motion." She adds: "Perhaps a corpse would be re-animated; galvanism had given token of such things: perhaps the component parts of a creature might be manufactured, brought together, and endured with vital warmth." (Scholars note that "vermicelli" could be a misreading of Vorticellae—microscopic aquatic organisms that Darwin is known to have worked with; he wasn't bringing Italian pasta to life.)

Victor pursues his quest for the spark of life with unrelenting zeal. First he "became acquainted with the science of anatomy: but this was not sufficient; I must also observe the natural decay and corruption of the human body." He eventually succeeds "in discovering the cause of the generation of life; nay, more, I became myself capable of bestowing animation upon lifeless matter."

page from original draft of Frankenstein
A page from the original draft of Frankenstein.
Wikimedia Commons // Public Domain

To her credit, Shelley does not attempt to explain what the secret is—better to leave it to the reader's imagination—but it is clear that it involves the still-new science of electricity; it is this, above all, which entices Victor.

In Shelley's time, scientists were just beginning to learn how to store and make use of electrical energy. In Italy, in 1799, Allesandro Volta had developed the "electric pile," an early kind of battery. A little earlier, in the 1780s, his countryman Luigi Galvani claimed to have discovered a new form of electricity, based on his experiments with animals (hence the term "galvanism" mentioned above). Famously, Galvani was able to make a dead frog's leg twitch by passing an electrical current through it.

And then there's Giovanni Aldini—a nephew of Galvani—who experimented with the body of a hanged criminal, in London, in 1803. (This was long before people routinely donated their bodies to science, so deceased criminals were a prime source of research.) In Shelley's novel, Victor goes one step further, sneaking into cemeteries to experiment on corpses: "… a churchyard was to me merely the receptacle of bodies deprived of life … Now I was led to examine the cause and progress of this decay, and forced to spend days and nights in vaults and charnel-houses."

Electrical experimentation wasn't just for the dead; in London, electrical "therapies" were all the rage—people with various ailments sought them out, and some were allegedly cured. So the idea that the dead might come back to life through some sort of electrical manipulation struck many people as plausible, or at least worthy of scientific investigation.

One more scientific figure deserves a mention: a now nearly forgotten German physiologist named Johann Wilhelm Ritter. Like Volta and Galvani, Ritter worked with electricity and experimented with batteries; he also studied optics and deduced the existence of ultraviolet radiation. Davy followed Ritter's work with interest. But just as Ritter was making a name for himself, something snapped. He grew distant from his friends and family; his students left him. In the end he appears to have had a mental breakdown. In The Age of Wonder, author Richard Holmes writes that this now-obscure German may have been the model for the passionate, obsessive Victor Frankenstein.

A CAUTIONARY TALE ABOUT HUMAN NATURE, NOT SCIENCE

Plate from 1922 edition of Frankenstein
A Plate from 1922 edition of Frankenstein.
Wikimedia Commons // Public Domain

In time, Victor Frankenstein came to be seen as the quintessential mad scientist, the first example of what would become a common Hollywood trope. Victor is so absorbed by his laboratory travails that he failed to see the repercussions of his work; when he realizes what he has unleashed on the world, he is overcome with remorse.

And yet scholars who study Shelley don't interpret this remorse as evidence of Shelley's feelings about science as a whole. As the editors of Frankenstein: Annotated for Scientists, Engineers, and Creators of All Kinds write, "Frankenstein is unequivocally not an antiscience screed."

We should remember that the creature in Shelley's novel is at first a gentle, amicable being who enjoyed reading Paradise Lost and philosophizing on his place in the cosmos. It is the ill-treatment he receives at the hands of his fellow citizens that changes his disposition. At every turn, they recoil from him in horror; he is forced to live the life of an outcast. It is only then, in response to cruelty, that his killing spree begins.

"Everywhere I see bliss, from which I alone am irrevocably excluded," the creature laments to his creator, Victor. "I was benevolent and good—misery made me a fiend. Make me happy, and I shall again be virtuous."

But Victor does not act to ease the creature's suffering. Though he briefly returns to his laboratory to build a female companion for the creature, he soon changes his mind and destroys this second being, fearing that "a race of devils would be propagated upon the earth." He vows to hunt and kill his creation, pursuing the creature "until he or I shall perish in mortal conflict."

Victor Frankenstein's failing, one might argue, wasn't his over-zealousness for science, or his desire to "play God." Rather, he falters in failing to empathize with the creature he created. The problem is not in Victor's head but in his heart.

10 Citizen Science Projects That Need Your Help

A citizen scientist takes a photo of scarlet mushrooms.
A citizen scientist takes a photo of scarlet mushrooms.
lovelypeace/iStock via Getty Images

Channel your inner Nikola Tesla or Marie Curie by participating in actual scientific research, either out and about or without even leaving your couch. These projects unleash the power of the public to be places that researchers can’t be and to spread the workload when data start piling up. They really can’t do it without you.

1. Catalog photos of Earth's cities at night.

Photo from space of a city at night
Identify cities from the photos taken from the International Space Station.
Chris Hadfield, NASA // Public Domain

Cities at Night—a study by Complutense University of Madrid—asks people to catalog images of the Earth at night taken from the International Space Station, part of the millions of images in the Gateway to Astronaut Photography of Earth database. The current project, Lost at Night, needs people to identify cities within images of 310-mile circles on Earth. Hundreds of volunteers have classified thousands of images already, but classification by multiple individuals ensures greater accuracy. In fact, the project will determine the optimum number of people needed. The primary goal is an open atlas of publicly available nighttime images. Just log on to the image database to help.

2. Follow fish using high-tech tags.

You’ll have to go fishing—an outdoor activity you can do by yourself!—for this assignment. Volunteer to tag fish for the American Littoral Society, whose citizen scientists have tagged more than 640,000 fish since the program began in 1965. You can tag the fish you catch and release, or report tagged fish to the organization. The data is sent to the National Marine Fisheries Service Laboratory in Woods Hole, Massachusetts, where it helps scientists track the populations and movements of coastal species like striped bass, flounder, and bluefish. To get started, become a member of the American Littoral Society, which comes with a packet of tagging gear and instructions.

3. Spy on penguins in Antarctica.

Penguins on an ice floe
Keeping tabs on penguins is one way a citizen scientist can lend a hand.
axily/iStock via Getty Images

Here's another project for those stuck indoors. Penguins are threatened by climate change, fisheries, and direct human disturbance, yet scientists have little data on the birds. To fill in the gaps, 50 cameras throughout the Southern Ocean and Antarctic Peninsula take images of colonies of gentoo, chinstrap, Adélie, and king penguins year-round. You can help the University of Oxford-based research team by sorting through thousands of images to identify and mark individual adult penguins, chicks, and eggs. You'll be pinpointing seasonal and geographic variations in populations that may represent changes to the Antarctic ecosystem. Marking other animals in the images helps researchers figure out which ones are hanging around penguin colonies. Discuss a specific image or the project with the science team and other volunteers in an online forum.

4. Battle an invasive marine species.

Like to dive or snorkel? Make it count by reporting lionfish sightings or captures to the Reef Environmental Education Foundation's Volunteer Reef Survey Project. Lionfish, which are native to the Indo-Pacific, were first sighted in the South Atlantic in 1985 and were likely released by private aquarium owners. Since then, they have spread throughout the Caribbean and Gulf of Mexico and caused native fish populations to decline by up to 80 percent. Scientists say this invasion may be one of the century’s greatest threats to warm temperate and tropical Atlantic reefs. You can also join a lionfish derby to catch and kill some of the tasty fish so scientists can analyze their biology.

5. Count birds from your backyard.

Bluebirds at a bird feeder
Bluebirds dine on mealworms at a bird feeder.
MelodyanneM/iStock via Getty Images

North American birds are in trouble. Recent studies predict dramatic declines in the populations of migratory birds due to climate change—and much of the data that went into these studies came from citizen scientists who monitored species without leaving home. The Cornell Lab of Ornithology and Birds Canada launches Project FeederWatch in the winter months; you simply put out a bird feeder and report the number and species of birds that visit it. Citizen scientists can also join the Cornell Lab's NestWatch—you find a nest, monitor it every three or four days, and report your data. And every February, the Audubon Society runs the Great Backyard Bird Count, in which participants submit data to produce a real-time snapshot of bird populations across North America. Any time of the year, birdwatchers can submit lists of the birds they see on eBird, a huge database of sightings that informs public policy, conservation efforts, and other initiatives.

6. Photograph plants for climate change research.

The Appalachian Mountain Club's Mountain Watch program asks hikers to document alpine and forest plants for ecological research. By taking photos of flowers and fruiting plants along woodland trails and uploading them to the iNaturalist app, participants provide data about the times and places that plants bloom. Scientists then compile the information in an online database and analyze it for trends that could indicate changing climates.

7. Comb through ships' logbooks for weather data.

Old handwritten letters
Practice your handwriting-deciphering skills on the Old Weather project.
scisettialfio/iStock via Getty Images

Ships’ logs from mid-19th century American sailing vessels contain detailed weather observations. Citizen scientists can help transcribe observations from whaling vessels for the Old Weather project; scientists will use the information to learn more about past environmental conditions and create better climate models for future projections. Historians will also use the data to track past ship movements and tell the stories of the people on board.

8. Make American history documents and science notes accessible to more people.

The Smithsonian Libraries are stuffed with original history and science documents that have lain in drawers for decades. Help open up "America's attic" to the public by organizing and transcribing digital versions of handwritten field notebooks, diaries, logbooks, specimen labels, photo albums, and other materials. You'll join thousands of other volunteers to investigate documents like the Sally K. Ride Papers, the collection of the Freedmen's Bureau (which helped former slaves following the Civil War), and field studies of insects by the Irish naturalist Arthur Stelfox.

9. Investigate historical crimes in Australia.

Drawing of a convict ship to Australia
A drawing of a 19th-century convict ship destined for Australia.
Photos.com/iStock via Getty Images

If you're obsessed with true crime, you'll love this project. Volunteer to investigate and transcribe criminal records from 19th- and 20th-century Australia, which was founded as a British penal colony. Alana Piper, a postdoctoral research fellow at the Australian Centre for Public History at the University of Technology Sydney, will use the transcriptions to construct the "life histories and offending patterns of Australian criminals" from the 1850s to the 1940s. More than 40,000 subjects have been completed so far.

10. Map the unique features of Mars's South Pole.

Travel to Mars—without the hassle of zero gravity or space-vegetable farming—through Planet Four, a citizen science project that is currently tasked with identifying features on Mars's dynamic South Pole. Volunteers examine photos from the HiRISE camera on NASA's Mars Reconaissance Orbiter and pick out "fans" or "blotches" in the landscape of seasonal carbon dioxide ice. Scientists believe these structures indicate wind speed and direction on the Martian surface and offers clues about the evolution of the Red Planet's climate.

Why Cats Like to Shove Their Butts in Your Face, According to an Animal Behavior Expert

This cat might be happier showing off its butt.
This cat might be happier showing off its butt.
Okssi68/iStock via Getty Images

Cats are full of eccentric behaviors. They hate getting wet. Their tongues sometimes get stuck midway out of their mouths, known as a “blep.” And they’re really happy hanging out in bodegas.

Some of these traits can be explained while others are more mysterious. Case in point: when they stick their rear end in your face for no apparent reason.

Are cats doing this just to humiliate their hapless caregivers? What would possess a cat to greet a person with its butt? Why subject the person who gives you food and shelter to such degradation?

To find out, Inverse spoke with Mikel Delgado, a postdoctoral fellow at the School of Veterinary Medicine at UC Davis. According to Delgado, cats don’t necessarily perceive their rectal flaunting as anything aggressive or domineering. In fact, it might be a cat’s way of saying hello.

“For cats, it’s normal for them to sniff each other’s butts as a way to say hello or confirm another cat’s identity,” Delgado said. “It’s hard for us to relate to, but for them, smell is much more important to cats and how they recognize each other than vision is. So cats may be ‘inviting’ us to check them out, or just giving us a friendly hello.”

For a cat, presenting or inspecting a butt is a kind of fingerprint scan. It’s a biological measure of security.

Other experts agree with this assessment, explaining that cats use their rear end to express friendliness or affection. Raising their tail so you can take a whiff is a sign of trust. If they keep their tail down, it’s possible they might be feeling a little shy.

If you think this situation is eased by the fact you rarely hear cats fart, we have bad news. They do. Because they don’t often gulp air while eating, they just don’t have enough air in their digestive tract to make an audible noise. Rest assured that, statistically speaking, there will be times a cat giving you a friendly greeting is also stealthily farting in your face.

[h/t Inverse]

SECTIONS

arrow
LIVE SMARTER