13 Scientific Explanations for Everyday Life

iStock
iStock

Science holds our lives together. It explains everything from why bread rises to why you need gas to power your car. In his book Atoms Under the Floorboards, author Chris Woodford lays out the abstract science that underlies the everyday world, from the big (how do skyscrapers stay up?) to the small (why does my laptop get hot when I’m watching Netflix?). Along the way, he also calculates the answers to whimsical questions like, “How many people would I have to gather together to keep my house warm without heat?” (A lot, but not as many as you'd think.) Here are 13 things we learned about the world through his eyes.

1. A POWER DRILL COULD SET YOUR HOUSE ON FIRE, IN THEORY.

Because of friction, electric drills generate heat. The motor, the drill bit, and the wall all get hot. It takes about 2000 joules of energy to heat one kilogram of wood just 1°C. Assuming a typical power drill uses 750 watts of electricity, and it puts out 750 joules of energy, Woodford calculates that it would take just four minutes to set fire to a wooden wall in a 68°F room.

2. STICKY NOTES COME OFF EASILY BECAUSE THEIR ADHESIVE IS UNEVEN.

Post-it Notes feature a plastic adhesive that is spread out in blobs across the paper. When you slap a Post-it onto your bulletin board, only some of these blobs (technically called micro-capsules) touch the surface to keep the note stuck there. Thus, you can unstick it, and when you go to attach it to something else, the unused blobs of glue can take over the adhesive role. Eventually, all the capsules of glue will get used up or clogged with dirt, and the sticky note won't stick anymore.

3. GUM IS CHEWY BECAUSE IT'S MADE OF RUBBER.

Early gums got their elastic texture from chicle, a natural type of latex rubber. Now, your bubble gum is made with synthetic rubbers like styrene butadiene (also used in car tires) or polyvinyl acetate (also used in Elmer’s glue) to mimic the effect of chicle.

4. OFFICE BUILDINGS ARE EVER-SO-SLIGHTLY TALLER AT NIGHT.

After all the employees go home, tall office buildings get just a little taller. A 1300-foot-tall skyscraper shrinks about 1.5 millimeters under the weight of 50,000 occupants (assuming they weigh about the human average).

5. A LEGO BRICK CAN SUPPORT 770 POUNDS OF FORCE.

LEGOs can support four to five times the weight of a human without collapsing. They are strong enough to support a tower 375,000 bricks tall, or around 2.2 miles high.

6. POLISHING SHOES IS LIKE FILLING IN A ROAD'S POTHOLES.

Regular leather appears dull to the eye because it’s covered in teeny-tiny scrapes and scratches that scatter whatever light hits the material. When you polish a leather shoe, you coat it in a fine layer of wax, filling in those crevices much like a road crew smoothes out a street by filling in its potholes. Because the surface is more uniform, rays of light bounce back toward your eye more evenly, making it look shiny.

7. YOU COULD HEAT YOUR HOUSE WITH JUST 70 PEOPLE.

People give off body heat, as anyone who has been trapped in a small crowded room knows. So how many people would it take to warm up your home with just body heat in the winter? About 70 people in motion, or 140 people still, figuring that humans radiate 100-200 watts of heat normally and that the house uses four electric storage heaters.

8. DENSITY EXPLAINS WHY COLD WATER FEELS COLDER THAN AIR AT THE SAME TEMPERATURE.

Because water is denser than air, your body loses heat 25 times more quickly while in water than it would in air at the same temperature. Water's density gives it a high specific heat capacity, meaning it takes a lot of heat to raise its temperature even a little, and it's very good at retaining heat or cold (the reason why hot soup stays hot for a long time, and why the ocean is much cooler than land). Water is a great conductor, so it's very effective at transferring that heat or cold to your body.

9. WATER CLEANS WELL BECAUSE IT HAS ASYMMETRICAL MOLECULES.

Because water molecules are triangular—made of two hydrogen atoms stuck to one oxygen atom—they have slightly different charges on their different sides, kind of like a magnet. The hydrogen end of the molecule is slightly positive, and the oxygen side is slightly negative. This makes water excellent at sticking to other molecules. When you wash away dirt, the water molecules stick to the dirt and pull it away from whatever surface it was on. This is also the reason water has surface tension: it’s great at sticking to itself.

10. THE "PULSE" SETTING ON A BLENDER WORKS BETTER BECAUSE OF TURBULENCE.

When your blender stops chopping up food and begins just spinning it around in circles, it’s because everything inside is spinning at the same rate. Instead of actually blending ingredients together, it’s experiencing laminar flow—all the layers of liquid are moving in the same direction with constant motion. The pulse function on the blender introduces turbulence, so instead of the fruit chunks rolling around the side of the blender, they fall into the center and get blended up into a smoothie.

11. BABIES' BODIES CONTAIN MORE WATER THAN ADULTS.'

Adults are around 60 percent water. By contrast, newborn babies are about 80 percent water. But that percentage quickly drops: A year after birth, kids' water content is down to around 65 percent, according to the USGS.

12. GLASS BREAKS EASILY BECAUSE ITS ATOMS ARE LOOSELY ARRANGED.

Unlike other solid materials, like metals, glass is made up of amorphous, loosely packed atoms arranged randomly. They can’t absorb or dissipate energy from something like a bullet. The atoms can’t rearrange themselves quickly to retain the glass’s structure, so it collapses, shattering fragments everywhere.

13. CALORIE COUNTS ARE CALCULATED BY INCINERATING FOOD.

Calorie values on nutritional labels estimate the energy contained in the food within the package. To figure out how much energy is in a specific food, scientists use a calorimeter. One type of calorimeter essentially burns up the food inside a device surrounded by water. By measuring how much the temperature of the water changes in the process, scientists can determine how much energy was contained in the food.

This story originally ran in 2015.

Pandemic vs. Epidemic: What’s the Difference?

If scientists can't develop a vaccine for a new virus quickly enough, an epidemic can turn into a pandemic.
If scientists can't develop a vaccine for a new virus quickly enough, an epidemic can turn into a pandemic.
doble-d/iStock via Getty Images

As the new coronavirus continues to spread around the world, the words epidemic and pandemic are showing up in news reports more often than they usually do. While the terms are closely related, they don’t refer to the same thing.

As the Association for Professionals in Infection Control and Epidemiology (APIC) explains on its website, “an epidemic occurs when an infectious disease spreads rapidly to many people.” Usually, what precedes an epidemic is an outbreak, or “a sudden rise in the number of cases of a disease.” An outbreak can affect a single community or several countries, but it’s on a much smaller scale than an epidemic.

If an epidemic can’t be contained and keeps expanding its reach, public health officials might start calling it a pandemic, which means it’s affected enough people in different areas of the world to be considered a global outbreak. In short, a pandemic is a worldwide epidemic. It infects more people, causes more deaths, and can also have widespread social and economic repercussions. The spread of the Spanish influenza from 1918 to 1919, which killed between 20 and 40 million people around the world, was a pandemic; more recently, the H1N1 influenza created a pandemic in 2009.

Here’s where it gets a little tricky: There’s no cut-and-dried classification system for outbreaks, epidemics, and pandemics. Based on the definitions above, it might seem like the current coronavirus disease, now called COVID-19, falls into the pandemic category already—according to a map from the World Health Organization (WHO), there are more than 80,000 confirmed cases in 34 countries, and nearly 2700 people have died from the disease. It’s also beginning to impact travel, stock markets, and the global economy as a whole. But WHO maintains that although the situation has the potential to become a pandemic, it’s still an epidemic for now.

“It really is borderline semantics, to be honest with you,” Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, told CNN earlier this month. “I think you could have people arguing each end of it. Pandemics mean different things to different people.”

[h/t APIC.org]

Fat Bats Might Be Resistant to Deadly White-Nose Syndrome

Penn State, Flickr // CC BY-NC-ND 2.0
Penn State, Flickr // CC BY-NC-ND 2.0

Good news for flying mammals: chubby little brown bats might be genetically resistant to white-nose syndrome, a fungal disease that’s killed more than 5.5 million bats since it was first documented in 2006 [PDF]. A new study in the journal Scientific Reports describes three genetic adaptations in the bats that could protect them from the pathogen.

Little brown bats (Myotis lucifugus), common in Canada and the eastern United States, are especially susceptible to white-nose syndrome. According to lead author Giorgia G. Auteri, a doctoral candidate at the University of Michigan, white-nose syndrome kills bats by disrupting their hibernation cycles.

“When they’re in hibernation in the winter, they’re not meant to be waking up. They’re supposed to be asleep,” Auteri tells Mental Floss. “But this fungus grows on them, and it causes the bats to keep waking up during hibernation. And because they’re waking up when they shouldn’t be, they’re running out of fat reserves too early.”

But while white-nose syndrome has devastated bat populations in North America, not all infected bats die from the disease—some recover. Auteri wanted to find out what made the survivors so special.

Auteri and her team compared the genetic makeup of nine surviving and 29 non-surviving little brown bats from northern Michigan. They discovered that survivors share three important genetic distinctions. “One is involved with fat metabolism,” she says. “And another is involved with regulating when the bats wake up from hibernation. And the third gene is involved in their echolocation ability, in their sonar for hunting insects.”

The results make sense, Auteri says. Because white-nose syndrome interrupts bats’ hibernation schedules, bats with genes that relate to more optimal fat storage (i.e., they’re fatter) and better hibernation regulation (i.e., they sleep longer) are more likely to survive the disease.

Auteri’s research could help scientists and conservationists find ways to preserve little brown bat populations. Besides being adorable, little brown bats also play an important ecological role as predators of insects like mosquitoes, moths, and other pests that are destructive to crops and forests.

SECTIONS

arrow
LIVE SMARTER