6 Factors That Determine Whether or Not You Remember Your Dreams

iStock
iStock

Within the scientific community, dreams are still something of a mystery. Many experiments have been conducted and many theories have been put forth, but researchers still don’t fully understand why or how we dream. Further complicating matters is the fact that everyone dreams, but some people never remember their subconscious escapades.

However, improvements in brain imaging and recent physiological studies have brought us one step closer to answering the question of why some people remember their dreams more than others. There’s no simple, definitive explanation, “but there are a number of things that correlate,” Dr. Deirdre Leigh Barrett, a psychology professor at Harvard Medical School and author of The Committee of Sleep, tells Mental Floss. Barrett shared a few of the factors that can affect your dream recall.

1. SEX

Women, on average, recall more dreams than men. Researchers aren’t exactly sure why, but Barrett says it could be a biological or hormonal difference. Alternatively, women might be more cognizant of their dreams because they tend to be more interested in dreams in general. However, Barrett notes that differences between men and women in regard to dream recall are “modest” and that there are greater differences within each sex than between the sexes. In other words: There are plenty of women with low dream recall and plenty of men with high dream recall.

2. AGE

As we get older, it often gets harder to recall our dreams. Your ability to remember dreams improves in late childhood and adolescence, and tends to peak in your twenties, Barrett says. After that point, people often experience a gradual drop-off in dream recall. However, there are exceptions, and people sometimes experience the opposite.

3. PERSONALITY

Again, this is by no means a prescriptive rule, but there seems to be a correlation between certain personality traits and high dream recall. "More psychologically-minded people tend to have higher dream recall, and people who are more practical and externally focused tend to have lower recall," Barrett says. In addition, better dream recall has a “mild correlation” with better recall while completing certain memory tasks during waking hours, according to Barrett.

4. AMOUNT OF SLEEP

The amount of sleep one gets on average is one of the most important factors related to dream recall. People dream every 90 minutes during the REM (rapid eye movement) sleep cycle. However, those REM periods get longer throughout the night, meaning that you’re doing the most dreaming toward the morning—generally right before you wake up. If you only sleep four hours instead of eight, you’re only getting about 20 percent of your dream time. For this reason, some people report remembering more of their dreams on the weekend, when they have the chance to catch up on sleep.

5. BRAIN ACTIVITY

Thanks to brain imaging, scientists now have a better idea of which parts of the brain are associated with dreaming. A part of the brain that processes information and emotions is more active in people who remember their dreams more often, according to a 2014 study. This region toward the back of the brain, called the temporo-parietal junction (TPJ), may help people pay more attention to external stimuli. In turn, this may promote something called instrasleep wakefulness.

"This may explain why high dream recallers are more reactive to environmental stimuli, awaken more during sleep, and thus better encode dreams in memory than low dream recallers," Dr. Perrine Ruby told the International Business Times. "Indeed, the sleeping brain is not capable of memorizing new information; it needs to awaken to be able to do that."

Higher activity in the TPJ and another region of the brain called the medial prefrontal cortex (MPFC) might also "promote the mental imagery and/or memory encoding of dreams," researchers wrote in the study's abstract.

More recently, in 2017, researchers discovered that high dream recall is also linked to higher activity toward the front of the brain. The pre-frontal cortex is the part of the brain that deals with abstract thinking, so it makes sense that it has been linked to dream recall and lucid dreaming (being aware that one is dreaming), Barrett says.

6. RESPONSE TO EXTERNAL STIMULI

In a similar vein, people who remember their dreams more frequently also tend to exhibit more brain activity after hearing their name spoken aloud while they’re awake, according to a 2013 study. Upon hearing their names, a group of “high recallers,” who remember their dreams almost every night, experienced a greater decrease in a brain wave called the alpha wave than a group of “low recallers,” who remember their dreams once or twice a month. This decrease in alpha waves is likely preceded by an increase in brain activity upon hearing their names. Essentially, people with greater dream recall tend to experience activity in more regions of their brain in response to sounds. According to Barrett, there may be an evolutionary explanation for this.

“Evolution wants us to get restorative sleep but it also wanted us to wake up to danger and check it out and be able to go back to sleep quickly afterwards,” she says. Think of the all the dangers our prehistoric ancestors had to deal with, and it's clear that this response is important for survival. In essence, high recallers are “probably just a little more aware and watching during their dream, and that helps make it a long-term memory.”

So what can you do to help you remember your dreams? It may sound simple, but before you go to bed, think to yourself, “I’m going to remember my dreams tonight.” The very act of thinking about dreaming can make a big difference.

“You could say that just reading this article is somewhat more likely to make you recall a dream tonight,” Barrett says. “People who are taking a class on dreams or reading a book on dreams—any short-term intervention of paying more attention to them—tends to create a short-term blip in dream recall.”

When you first wake up, don’t do anything except lie in bed and try to recall any dreams you had. If something comes back to you, write it down or use a voice recorder to crystallize your thoughts. Dreams are still in your short-term memory when you wake up, so they’re fragile and easy to forget.

If you don’t remember anything, Barrett says it’s still helpful to assess how you feel when you first awaken. Are you happy, sad, or anxious? “Sometimes if you just stay with whatever emotion or little bit of content you woke up with,” she says, “a dream will come rushing back.”

The Reason Our Teeth Are So Sensitive to Pain

This woman's tooth pain is actually helping her avoid further damage.
This woman's tooth pain is actually helping her avoid further damage.
champja/iStock via Getty Images

On a good day, your teeth can chew through tough steak and split hard candy into pieces without you feeling a thing. But sometimes, something as simple as slurping a frosty milkshake can send a shock through your tooth that feels even more painful than stubbing your toe.

According to Live Science, that sensitivity is a defense mechanism we’ve developed to protect damaged teeth from further injury.

“If you eat something too hot or chew something too cold, or if the tooth is worn down enough where the underlying tissue underneath is exposed, all of those things cause pain,” Julius Manz, American Dental Association spokesperson and director of the San Juan College dental hygiene program, told Live Science. “And then the pain causes the person not to use that tooth to try to protect it a little bit more.”

Teeth are made of three layers: enamel on the outside, pulp on the inside, and dentin between the two. Pulp, which contains blood vessels and nerves, is the layer that actually feels pain—but that doesn’t mean the other two layers aren’t involved. When your enamel (which isn’t alive and can’t feel anything at all) is worn down, it exposes the dentin, a tissue that will then allow especially hot or cold substances to stimulate the nerves in the pulp. Pulp can’t sense temperature, so it interprets just about every stimulus as pain.

If you do have a toothache, however, pulp might not be the (only) culprit. The periodontal ligament, which connects teeth to the jawbone, can also feel pain. As Manz explains, that sore feeling people sometimes get because of an orthodontic treatment like braces is usually coming from the periodontal ligament rather than the pulp.

To help you avoid tooth pain in the first place, here are seven tips for healthier teeth.

[h/t Live Science]

Arrokoth, the Farthest, Oldest Solar System Object Ever Studied, Could Reveal the Origins of Planets

NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko

A trip to the most remote part of our solar system has revealed some surprising insights into the formation of our own planet. Three new studies based on data gathered on NASA's flyby of Arrokoth—the farthest object in the solar system from Earth and the oldest body ever studied—is giving researchers a better idea of how the building blocks of planets were formed, what Arrokoth's surface is made of, and why it looks like a giant circus peanut.

Arrokoth is a 21-mile-wide space object that formed roughly 4 billion years ago. Located past Pluto in the Kuiper Belt, it's received much less abuse than other primordial bodies that sit in asteroid belts or closer to the sun. "[The objects] that form there have basically been unperturbed since the beginning of the solar system," William McKinnon, lead author of one of the studies, said at a news briefing.

That means, despite its age, Arrokoth doesn't look much different today than when it first came into being billions of years ago, making it the perfect tool for studying the origins of planets.

In 2019, the NASA spacecraft New Horizons performed a flyby of Arrokoth on the edge of the solar system 4 billion miles away from Earth. The probe captured a binary object consisting of two connected lobes that were once separate fragments. In their paper, McKinnon and colleagues explain that Arrokoth "is the product of a gentle, low-speed merger in the early solar system."

Prior to these new findings, there were two competing theories into how the solid building blocks of planets, or planetesimals, form. The first theory is called hierarchical accretion, and it states that planetesimals are created when two separate parts of a nebula—the cloud of gas and space dust born from a dying star—crash into one another.

The latest observations of Arrokoth support the second theory: Instead of a sudden, violent collision, planetesimals form when gases and particles in a nebula gradually amass to the point where they become too dense to withstand their own gravity. Nearby components meld together gradually, and a planetesimal is born. "All these particles are falling toward the center, then whoosh, they make a big planetesimal. Maybe 10, 20, 30, 100 kilometers across," said McKinnon, a professor of Earth and planetary sciences at Washington University. This type of cloud collapse typically results in binary shapes rather than smooth spheroids, hence Arrokoth's peanut-like silhouette.

If this is the origin of Arrokoth, it was likely the origin of other planetesimals, including those that assembled Earth. "This is how planetesimal formation took place across the Kuiper Belt, and quite possibly across the solar system," New Horizons principal investigator Alan Stern said at the briefing.

The package of studies, published in the journal Science, also includes findings on the look and substance of Arrokoth. In their paper, Northern Arizona University planetary scientist Will Grundy and colleagues reveal that the surface of the body is covered in "ultrared" matter so thermodynamically unstable that it can't exist at higher temperatures closer to the sun.

The ultrared color is a sign of the presence of organic substances, namely methanol ice. Grundy and colleagues speculate that the frozen alcohol may be the product of water and methane ice reacting with cosmic rays. New Horizons didn't detect any water on the body, but the researchers say its possible that H2O was present but hidden from view. Other unidentified organic compounds were also found on Arrokoth.

New Horizon's flyby of Pluto and Arrokoth took place over the course of a few days. To gain a further understanding of how the object formed and what it's made of, researchers need to find a way to send a probe to the Kuiper Belt for a longer length of time, perhaps by locking it into the orbit of a larger body. Such a mission could tell us even more about the infancy of the solar system and the composition of our planetary neighborhood's outer limits.

SECTIONS

arrow
LIVE SMARTER