5 Signs Humans Are Still Evolving

Lealisa Westerhoff, AFP/Getty Images
Lealisa Westerhoff, AFP/Getty Images

When we think of human evolution, our minds wander back to the millions of years it took natural selection to produce modern-day man. Recent research suggests that, despite modern technology and industrialization, humans continue to evolve. "It is a common misunderstanding that evolution took place a long time ago, and that to understand ourselves we must look back to the hunter-gatherer days of humans," Dr. Virpi Lummaa, a professor at the University of Turku, told Gizmodo.

But not only are we still evolving, we're doing so even faster than before. In the last 10,000 years, the pace of our evolution has sped up, creating more mutations in our genes, and more natural selections from those mutations. Here are some clues that show humans are continuing to evolve.

1. Humans drink milk.

Historically, the gene that regulated humans' ability to digest lactose shut down as we were weaned off our mothers' breast milk. But when we began domesticating cows, sheep, and goats, being able to drink milk became a nutritionally advantageous quality, and people with the genetic mutation that allowed them to digest lactose were better able to propagate their genes.

The gene was first identified in 2002 in a population of northern Europeans that lived between 6000 and 5000 years ago. The genetic mutation for digesting milk is now carried by more than 95 percent of northern European descendants. In addition, a 2006 study suggests this tolerance for lactose developed again, independently of the European population, 3000 years ago in East Africa.

2. We're losing our wisdom teeth.

Our ancestors had much bigger jaws than we do, which helped them chew a tough diet of roots, nuts, and leaves. And what meat they ate they tore apart with their teeth, all of which led to worn-down chompers that needed replacing. Enter the wisdom teeth: A third set of molars is believed to be the evolutionary answer to accommodate our ancestors' eating habits.

Today, we have utensils to cut our food. Our meals are softer and easier to chew, and our jaws are much smaller, which is why wisdom teeth are often impacted when they come in — there just isn't room for them. Unlike the appendix, wisdom teeth have become vestigial organs. One estimate says 35 percent of the population is born without wisdom teeth, and some say they may disappear altogether.

3. We're resisting infectious diseases.

In 2007, a group of researchers looking for signs of recent evolution identified 1800 genes that have only become prevalent in humans in the last 40,000 years, many of which are devoted to fighting infectious diseases like malaria. More than a dozen new genetic variants for fighting malaria are spreading rapidly among Africans. Another study found that natural selection has favored city-dwellers. Living in cities has produced a genetic variant that allows us to be more resistant to diseases like tuberculosis and leprosy. "This seems to be an elegant example of evolution in action," says Dr. Ian Barnes, an evolutionary biologist at London's Natural History Museum, said in 2010 statement. "It flags up the importance of a very recent aspect of our evolution as a species, the development of cities as a selective force."

4. Our brains are shrinking.

While we may like to believe our big brains make us smarter than the rest of the animal world, our brains have actually been shrinking over the last 30,000 years. The average volume of the human brain has decreased from 1500 cubic centimeters to 1350 cubic centimeters, which is an amount equivalent to the size of a tennis ball.

There are several different conclusions as to why this is: One group of researchers suspects our shrinking brains mean we are in fact getting dumber. Historically, brain size decreased as societies became larger and more complex, suggesting that the safety net of modern society negated the correlation between intelligence and survival. But another, more encouraging theory says our brains are shrinking not because we're getting dumber, but because smaller brains are more efficient. This theory suggests that, as they shrink, our brains are being rewired to work faster but take up less room. There's also a theory that smaller brains are an evolutionary advantage because they make us less aggressive beings, allowing us to work together to solve problems, rather than tear each other to shreds.

5. Some of us have blue eyes.

Originally, we all had brown eyes. But about 10,000 years ago, someone who lived near the Black Sea developed a genetic mutation that turned brown eyes blue. While the reason blue eyes have persisted remains a bit of a mystery, one theory is that they act as a sort of paternity test. “There is strong evolutionary pressure for a man not to invest his paternal resources in another man’s child,” Bruno Laeng, lead author of a 2006 study on the development of blue eyes, told The New York Times. Because it is virtually impossible for two blue-eyed mates to create a brown-eyed baby, our blue-eyed male ancestors may have sought out blue-eyed mates as a way of ensuring fidelity. This would partially explain why, in a recent study, blue-eyed men rated blue-eyed women as more attractive compared to brown-eyed women, whereas females and brown-eyed men expressed no preference.

Not-So-Fancy Feast: Your Cat Probably Would Eat Your Rotting Corpse

Tycson1/iStock via Getty Images
Tycson1/iStock via Getty Images

Cat enthusiasts often cite the warmth and companionship offered by their pet as reasons why they’re so enamored with them. Despite these and other positive attributes, cat lovers are often confronted with the spurious claim that, while their beloved furry pal might adore them when they’re alive, it won’t hesitate to devour their corpse if they should drop dead.

Though that’s often dismissed as negative cat propaganda spread by dog people, it turns out that it’s probably true. Fluffy might indeed feast on your flesh if you happened to expire.

A horrifying new case study published in the Journal of Forensic Sciences offers the fresh evidence. The paper, first reported by The Washington Post, documents how two cats reacted in the presence of a corpse at Colorado Mesa University’s Forensic Investigation Research Station, or body farm, where the deceased are used to further forensic science for criminal investigations.

The study’s authors did not orchestrate a meeting between cat and corpse. The finding happened by accident: Student and lead author Sara Garcia was scanning surveillance footage of the grounds when she noticed a pair of cats trespassing. The cats, she found, were interested in the flesh of two corpses; they gnawed on human tissue while it was still in the early stages of decomposition, stopping only when the bodies began leaching fluids.

The cats, which were putting away one corpse each, didn’t appear to have a taste for variety, as they both returned to the same corpse virtually every night. The two seemed to prefer the shoulder and arm over other body parts.

This visual evidence joins a litany of reports over the years from medical examiners, who have observed the damage left by both cats and dogs who were trapped in homes with deceased owners and proceeded to eat them. It’s believed pets do this when no other food source is available, though in some cases, eating their human has occurred even with a full food bowl. It’s something to consider the next time your cat gives you an affectionate lick on the arm. Maybe it loves you. Or maybe it has something else in mind.

[h/t The Washington Post]

Wolf Puppies Play Fetch, Too, Study Finds

Christina Hansen Wheat
Christina Hansen Wheat

It took thousands of years of selective breeding for wolves to become the Golden Retrievers you see at dog parks today. Domesticated dogs are very different from their wild counterparts, but according to a new study, they may have a surprising trait in common. Researchers found that some wolf puppies are willing to play fetch with total strangers, suggesting that following human commands is intrinsic to canines.

For their study in the journal iScience, researchers from Stockholm University in Sweden set out to find how domestication affects behaviors in young wolves. They raised litters of wolf and dog pups separately from 10 days old and placed them in various scenarios.

When the scientists tested how the wolf puppies would respond to a game of fetch, they expected to be ignored. Chasing a ball and bringing it back requires understanding human commands and obeying them—abilities that were thought to only have emerged in dogs post-domestication.

The first two wolf groups met expectations by showing little interest in the toy, but something different happened with the third set. Three eight-week old pups went after the ball and brought it back when they were encouraged to do so. This was the case even when the person giving the commands was someone they had never met before.

Even though most of the puppies didn't play fetch, the fact that those who did belonged to the same litter indicates a "standing variation" for a retrieving trait in wolves. "When you talk about a specific trait in the context of standing variation, it means that there is variation for the expression of this trait within a given population," co-author Christina Hansen Wheat tells Mental Floss. "For our study it suggests that, while probably rare, standing variation in the expression of human-directed behavior in ancestral populations could have been an important target for early selective pressures exerted during dog domestication." In other words, ancient people seeking to domesticate wolves might have focused on some wolves' innate ability to follow human commands.

The first dogs were domesticated as far back as 33,000 years ago. Over millennia, humans have selected for traits like loyalty, friendliness, and playfulness to create the modern dog, but these new findings could mean that the dog's earliest canine ancestors were genetically predisposed toward some of these behaviors.

"All three litters were brought up under identical and standardized conditions across years," Hansen says of the pups in the study. "With this significant effort to control the environmental conditions, it is likely that the differences in behavior across litters to some extent have a genetic basis."

After raising the dog and wolf litters for three years and completing that part of their study, the researchers will continue to analyze their data to see if there are any other adorable (or weird) traits the two groups share.

SECTIONS

arrow
LIVE SMARTER